faiz4000
- 19
- 0
Homework Statement
The coordinates ##(x,y)## of a particle moving along a plane curve at any time t, are given by
\frac{dy}{dt} + 2x=\sin 2t,
\frac{dx}{dt} - 2y=\cos 2t.
If at ##t=0##, ##x=1## and ##y=0##, using Lapace transform show that the particle moves along the curve
4x^2+4xy+5y^2=4
Homework Equations
note: Lowercase letters ##x##,##y## are functions of ##t##. Uppercase letters ##X##,##Y## are functions of ##s##.
The Attempt at a Solution
Apply Laplace Transform on the given equations
\frac{dy}{dt} + 2x=\sin 2t~~~~~~~~(1)
Applying LT,
sY-y(0)+2X=\frac{2}{s^2+4}
2X+sY= \frac{2}{s^2+4}~~~~~~~~(2)
\frac{dx}{dt} - 2y=\cos 2t~~~~~~~~(3)
Applying LT,
sX-2Y=\frac{s^2+s+4}{s^2+4}~~~~~~~~(4)
Now Solving ##(2)## and ##(4)## simultaneously,
X=-s^3-s^2-4s-4
Y=2s^2+8
Now I have to apply Inverse Laplace transform to get back ##x## and ##y## but i don't know how to get ILT of a constant... Also not sure everything I've done till now is right so please help
Last edited by a moderator: