Python Project Euler P76: Counting Arrangements of Consecutive Numbers

  • Thread starter Thread starter Arman777
  • Start date Start date
  • Tags Tags
    Euler Project
AI Thread Summary
The discussion revolves around a Python code snippet designed to calculate the number of ways to express a number as a sum of consecutive integers. The code works efficiently for small values but significantly slows down as the input number increases, prompting inquiries about optimization strategies. Participants express frustration over the lack of clarity in the problem statement and code comments, suggesting that a clearer definition would enhance understanding. Alternative solutions using combinatorial mathematics and libraries like NumPy and SciPy are proposed to improve performance, although some participants argue that these suggestions do not align with the original request for code optimization. The thread concludes with a reminder that the problem is part of an Euler challenge, which restricts public sharing of solutions, leading to the closure of the discussion.
Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
TL;DR Summary
How many different ways to write the 100.
Python:
import time
start = time.perf_counter()

def con(H):
    J = []
    Q = []
    W = []
    for i in H:
        for j in range(len(i)-1):
            Cop = i[::]
            y = i[j]+i[j+1]
            del Cop[j:j+2]
            Cop.insert(j,y)
            J.append(Cop)
    for i in J:
        y =(sorted("".join(str(j) for j in i)))
        Q.append("".join(y))
    T = list(set(Q))
    for i in T:
        y = [int(j) for j in i]
        W.append(y)
    return W

for num in range(1,100):
    K = [[1 for i in range(num)]]
    count = 0
    for i in range(len(K[0])-2):
        K = con(K)
        count = count + len(K)
    print(num,count+1)
    end = time.perf_counter()
    print(end-start,"second")

Here what this code does, For example, let us say num = 4. Then it creates an array of

[[1,1,1,1]]. Then it sums the consecutive numbers so our result becomes (from line 9-14)

[[2,1,1],[1,2,1],[1,1,2]] Since they are all same my code (from line 15-18) makes them just one function and returns ["112"] and then from 18-21 turns ["112"] to [[1,1,2]] and then I do this whole process again for the [[1,1,2]] and then I count the number of these arrays (from 25-29). The problem is its fast up to num = 20-30 but then it really slows down. Is there a way to increase the speed of my code or should I try a different algorithm?

Thanks.

For num = 5 the number should be 6
(1,1,1,1,1)
(2,1,1,1)
(2,2,1)
(3,2)
(3,1,1)
(4,1)

My code is correct bu just works slow.
 
Last edited:
Technology news on Phys.org
First, at no time do you mention the words "sum of integers". You are making us figure out what the problem is instead of writing it clearly. Please have more respect for our time.

Second, what algorithm? I see a mess of uncommented code, bit no description of what you are thinking about. I suppose we could eventually figure it out, but please have more respect for our time.

Third, yes, there is a better algorithm. My code (14 lines of C++) gets the answer in 2 milliseconds.
 
I have already explained my code. I gave an example for 5. I think I was pretty clear.
Vanadium 50 said:
My code (14 lines of C++) gets the answer in 2 milliseconds
Indeed there's an better algorithm but I am asking about my code and how can I improve it. Not some other solutions line number or time.
 
I must agree with @Vanadium 50 , the goal could be defined in a more clear way. However with some little of guessing I think I understand what result you expect (actually deducing from your example num=5).
If you don't need to list all the possible combinations of the relative integers, you can solve the problem by using combinatorics, and using numpy arrays in order to avoid slow python loops.

Try this code:
Python:
import numpy as np
from scipy.special import binom

# input
num = 5
n = np.arange(2, num+1)
x = binom(num-1, num-n) / binom(n,1)
# output
print(np.sum(np.ceil(x)))
 
lomidrevo said:
I must agree with @Vanadium 50 , the goal could be defined in a more clear way. However with some little of guessing I think I understand what result you expect (actually deducing from your example num=5).
If you don't need to list all the possible combinations of the relative integers, you can solve the problem by using combinatorics, and using numpy arrays in order to avoid slow python loops.

Try this code:
Python:
import numpy as np
from scipy.special import binom

# input
num = 5
n = np.arange(2, num+1)
x = binom(num-1, num-n) / binom(n,1)
# output
print(np.sum(np.ceil(x)))
This is calculating wrong. For 6 there are 10 different ways. Your code gives 12
 
Arman777 said:
I think I was pretty clear.

You weren't. The problem is to figure out how many different ways there are of writing the number 100 as a sum of two or more positive integers. "How many different ways to write 100" does not clearly communicate that.

Also, this is an Euler problem, and solutions aren't supposed to be publicly visible. So I am closing this thread.
 
Thread 'Star maps using Blender'
Blender just recently dropped a new version, 4.5(with 5.0 on the horizon), and within it was a new feature for which I immediately thought of a use for. The new feature was a .csv importer for Geometry nodes. Geometry nodes are a method of modelling that uses a node tree to create 3D models which offers more flexibility than straight modeling does. The .csv importer node allows you to bring in a .csv file and use the data in it to control aspects of your model. So for example, if you...
I tried a web search "the loss of programming ", and found an article saying that all aspects of writing, developing, and testing software programs will one day all be handled through artificial intelligence. One must wonder then, who is responsible. WHO is responsible for any problems, bugs, deficiencies, or whatever malfunctions which the programs make their users endure? Things may work wrong however the "wrong" happens. AI needs to fix the problems for the users. Any way to...
Back
Top