Projectile Motion - find initial velocity, flight time and max height

AI Thread Summary
The discussion focuses on solving a projectile motion problem involving a golf ball shot from a height of 6.5 ft at a 45° angle, landing 39 ft and 3 inches away. The initial velocity was calculated using the range formula, yielding approximately 10.82 m/s. The flight time was approached by splitting the motion into two phases, but confusion arose in determining the time for the ball to drop the remaining height after reaching its peak. The maximum height was computed to be around 4.96 m. Overall, the problem highlights the complexities of projectile motion calculations and the importance of breaking them down into manageable parts.
kgal
Messages
41
Reaction score
0

Homework Statement


a golf ball is shot from a height of 6.5 ft above the ground at an angle of 45° above the horizontal. The ball lands 39 ft and 3 inches downfield. Assuming ideal projectile motion find:
a. Initial velocity
b. flight time
c. maximum height


Homework Equations


r = [(v0*cosθ)t ]i + ((v0*sinθ)t - 1/5gt^2)j.


The Attempt at a Solution


I have attached my work (problem 5) but can't seem to know if it correct. I have converted all of my units to metric because gravity is know as 9.8 m/s^2.
 
Physics news on Phys.org
kgal,
From what I can gather, you don't have enough information given to you to solve for velocity, time of flight and maximum height directly. Try drawing what you see. The best method I use to solve projectile motion problems is to split the problem up into two parts - the object rising, & then falling.

Also, I can't see your work.
 
I used the definition of range to solve for initial velocity:
a.R = (v0cosθ)*[(2v0sinθ)/g]
solved for v0 = sqrt (Rg / 2cosθsinθ) = 10.82 m/s.

b. I split the problem into two pieces, the time it takes the ball to reach the horizontal
t1 = 2v0sinθ / g = 23.9 s
Then got stuck on finding out the time it took the ball to drop the remaining 1.98 m...
I tried finding t2 by using r = (v0cos45)t + (v0sin45t - 1/2 gt^2) and solve for t, but got to the point where t was a quadratic equation with 2 answers, t = 3.1 or 0.13 seconds...

c. y max = y0 + (v0sinθ) ^2 / 2g = 4.96 m
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top