Projecting a vector onto a plane

  • Thread starter Thread starter fishingspree2
  • Start date Start date
  • Tags Tags
    Plane Vector
fishingspree2
Messages
138
Reaction score
0

Homework Statement


Project a vector into the plane x + 3y + 2z = 0 in the direction d = 2i + j - k


The Attempt at a Solution


Let u = ai + bj +ck, a vector in R^3.
then u + t*d = (a+2t)i + (b+t)j + (c-t)k where t is a real number

when u + t*d hits the plane then

(a+2t) + 3(b+t) + 2(c-t) = 0
solve for t, substitute into u = t*d, then plug in the a,b,c values for the vector to be projected

Is this approach correct?

Thank you very much
 
Physics news on Phys.org
I presume that you mean "project the vector 2\vec{i}+ \vec{j}+ \vec{k}[/tex] onto the plane x+ 3y+ 2z= 0. <br /> <br /> Use the fact that the vector \vec{i}+ 3\vec{j}+ 2\vec{z}[/tex] is perpendicular to the plane. Project the given vector onto that normal vector, then subtract that from the given vector.
 
Hello,

No i meant project some vector on the plane in a direction parallel to 2i + j + k, which is not an orthogonal projection.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top