DanielFaraday
- 86
- 0
I apologize for the excessive use of Latex, but for this particular problem I think the notation would be extremely difficult to read otherwise. I usually try to keep my use of Latex to a minimum.
\text{Let }<br /> \mathbb{C}^3<br /> \text{ be equipped with the standard inner product and let }<br /> \text{\textit{W}}<br /> \text{ be the subspace of }<br /> \mathbb{C}^3<br /> \text{ that is spanned by }<br />
<br /> \pmb{u}_1=(1,0,1)<br /> \text{ and }<br /> \pmb{u}_2=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)<br /> \text{. Project the vector }<br /> \pmb{v}=(1,i,i)<br /> \text{ onto }<br /> \text{\textit{W}}.<br />
None
Here is what I have so far. I think I'm missing something, though.
<br /> \pmb{\hat{\pmb{u}}}_1=\frac{\pmb{u}_1}{\left\|\pmb{u}_1\right\|}=\frac{(1,0,1)}{\sqrt{2}}=\left(\sqrt{2},0,\sqrt{2}\right)<br />
<br /> \pmb{\hat{\pmb{u}}}_2=\frac{\pmb{u}_2}{\left\|\pmb{u}_2\right\|}=\frac{\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)}{1}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)<br />
<br /> \pmb{v}=(1,i,i)=a\pmb{\hat{\pmb{u}}}_1+b\pmb{\hat{\pmb{u}}}_2=a\left(\sqrt{2},0,\sqrt{2}\right)+b\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)=\left(a\sqrt{2}+b\frac{1}{\sqrt{3}},b\frac{1}{\sqrt{3}},a\sqrt{2}-b\frac{1}{\sqrt{3}}\right)<br />
<br /> b\frac{1}{\sqrt{3}}=i\Rightarrow b=i\sqrt{3}<br />
<br /> 1=a\sqrt{2}+b\frac{1}{\sqrt{3}}=a\sqrt{2}+i\Rightarrow a=\frac{1-i}{\sqrt{2}}<br />
<br /> v=\frac{1-i}{\sqrt{2}}\pmb{\hat{\pmb{u}}}_1+i\sqrt{3}\pmb{\hat{\pmb{u}}}_2<br />
Homework Statement
\text{Let }<br /> \mathbb{C}^3<br /> \text{ be equipped with the standard inner product and let }<br /> \text{\textit{W}}<br /> \text{ be the subspace of }<br /> \mathbb{C}^3<br /> \text{ that is spanned by }<br />
<br /> \pmb{u}_1=(1,0,1)<br /> \text{ and }<br /> \pmb{u}_2=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)<br /> \text{. Project the vector }<br /> \pmb{v}=(1,i,i)<br /> \text{ onto }<br /> \text{\textit{W}}.<br />
Homework Equations
None
The Attempt at a Solution
Here is what I have so far. I think I'm missing something, though.
<br /> \pmb{\hat{\pmb{u}}}_1=\frac{\pmb{u}_1}{\left\|\pmb{u}_1\right\|}=\frac{(1,0,1)}{\sqrt{2}}=\left(\sqrt{2},0,\sqrt{2}\right)<br />
<br /> \pmb{\hat{\pmb{u}}}_2=\frac{\pmb{u}_2}{\left\|\pmb{u}_2\right\|}=\frac{\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)}{1}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)<br />
<br /> \pmb{v}=(1,i,i)=a\pmb{\hat{\pmb{u}}}_1+b\pmb{\hat{\pmb{u}}}_2=a\left(\sqrt{2},0,\sqrt{2}\right)+b\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)=\left(a\sqrt{2}+b\frac{1}{\sqrt{3}},b\frac{1}{\sqrt{3}},a\sqrt{2}-b\frac{1}{\sqrt{3}}\right)<br />
<br /> b\frac{1}{\sqrt{3}}=i\Rightarrow b=i\sqrt{3}<br />
<br /> 1=a\sqrt{2}+b\frac{1}{\sqrt{3}}=a\sqrt{2}+i\Rightarrow a=\frac{1-i}{\sqrt{2}}<br />
<br /> v=\frac{1-i}{\sqrt{2}}\pmb{\hat{\pmb{u}}}_1+i\sqrt{3}\pmb{\hat{\pmb{u}}}_2<br />
Last edited: