Proof: Determinant of 3 Non-Colinear Points is 0

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Determinant Planes
Click For Summary
SUMMARY

The determinant of four points in three-dimensional space, specifically three non-collinear points and an additional point on the same plane, is zero due to linear dependence. The determinant can be expressed using a matrix formed by the coordinates of the points and an additional row for the homogeneous equation of the plane. This leads to the conclusion that the matrix is not invertible, confirming that the determinant equals zero. The coefficients of the plane equation, represented as \(Ax + By + Cz + D = 0\), are non-trivial solutions indicating that the points lie on the same plane.

PREREQUISITES
  • Understanding of determinants in linear algebra
  • Familiarity with the concept of linear dependence and independence
  • Knowledge of plane equations in three-dimensional space
  • Basic matrix operations and properties
NEXT STEPS
  • Study the properties of determinants in linear algebra
  • Learn about linear independence and dependence in vector spaces
  • Explore the derivation of plane equations from points in \(\mathbb{R}^3\)
  • Investigate applications of determinants in solving systems of linear equations
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, geometry, and related fields, will benefit from this discussion.

Dethrone
Messages
716
Reaction score
0
View attachment 4291

I understand the intuition behind it, but I'm unable to prove it. Essentially, three non-colinear points define a plane, and so by adding one more point on the plane, it becomes dependent. This means that the determinant is 0, since there is probably a dependent row lying around. Also, how is that determinant even set up in the first place?

Any ideas?
 

Attachments

  • determinant 2.PNG
    determinant 2.PNG
    7.2 KB · Views: 131
Physics news on Phys.org
Hi Rido12,

Here are some things to keep in mind. Let $x,y,z$ range over $\Bbb R$, so we may consider the determinantal condition as an equation in $\Bbb R^3$. By expansion of the determinant along the first row, you can see that it gives the equation of a plane. Note that if you substitute any of the points $(x_i,y_i,z_i)$ for $(x,y,z)$, the determinant is zero. Therefore, all three points lie in the plane. On the other hand, let $Ax + By + Cz + D = 0$ be the equation of plane containing the points $(x_i,y_i,z_i)$. If $(x_0,y_0,z_0)$ lies on this plane, then $\mathbf{X}\mathbf{v} = \mathbf{0}$, where $\mathbf{X}$ is the matrix

$$\begin{bmatrix}x_0&y_0&z_0&1\\
x_1&y_1&z_1&1\\
x_2&y_2&z_2&1\\
x_3&y_3&z_3&1\\
\end{bmatrix}$$

and $\mathbf{v}$ is the matrix

$$\begin{bmatrix}A\\B\\C\\D\end{bmatrix}$$

Since $\mathbf{v} \neq \mathbf{0}$, it is a nontrivial solution of the homogenous system $\mathbf{X}\mathbf{u} = \mathbf{0}$, and hence $\operatorname{det}(X) = 0$.
 
Hi Euge!

That all makes sense, but how can we show that $\mathbf{v}$ is a non-trivial solution? I guess that would be equivalent to showing it is not invertible, or has dependent rows/columns?
 
Last edited:
Consider that the coefficients $A, B, C$ form a vector normal to the plane. The unit normal to the plane exists because the vector from $(x_1, y_1, z_1)$ to $(x_2, y_2, z_2)$ is linearly independent from the vector from $(x_1, y_1, z_1)$ to $(x_3, y_3, z_3)$.
 
That makes sense, but I'm thinking I'm not grasping some other aspects related to this question. Suppose we only had three points and wanted to determine the coefficients of the plane Ax+By+Cx+D=0 that passed through those three points. That is equivalent to solving $Xv=0$, where $X$ is:

$\begin{bmatrix}
x_1&y_1&z_1&1\\
x_2&y_2&z_2&1\\
x_3&y_3&z_3&1\\
\end{bmatrix}$

and $v$:

$\begin{bmatrix}A\\B\\C\\D\end{bmatrix}$

But seeing as the system is independent, then only the trivial solution exists ($A=B=C=D=0$). Shouldn't there also be a unique solution (i.e $A=4,B=-1,C=5,D=-4 \implies 4x-1y+5z=4$ whereby $(x_i,y_i,z_i)$ are satisfied for all three points?)
 
Last edited:
The coefficients $ A, B, C, D $ were constant from the start. The goal is not to find the formula for the coefficients. The point is $(A, B, C)$ is nonzero, and therefore $(A, B, C, D)$ is nonzero.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
5K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
1
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
18K
  • · Replies 2 ·
Replies
2
Views
2K