Proof equality of an equation with exponentials.

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Proof
yungman
Messages
5,741
Reaction score
294
Proof if A,B and C are non zero constant:
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\Rightarrow\; a=b=c
The answer from the book involve differentiating it twice and manipulate a, b and c to proof.

My question is if I differentiate it once:
\Rightarrow\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
So if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
Does that already proof a=b=c?
 
Physics news on Phys.org
yungman said:
Proof if A,B and C are non zero constant:
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\Rightarrow\; a=b=c
The answer from the book involve differentiating it twice and manipulate a, b and c to proof.

My question is if I differentiate it once:
\Rightarrow\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
So if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
Does that already proof a=b=c?

It's not a proof until you say why you think that proves a=b=c.
 
Dick said:
It's not a proof until you say why you think that proves a=b=c.

Can I say if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jd(Ae^{jax}+jbBe^{jbx})=jcCe^{jcx}\Rightarrow;d=c
and if
\;jaAe^{jax}+jbBe^{jbx}=jd(Ae^{jax}+jbBe^{jbx})\Rightarrow\; a=b=d

Therefore a=b=c

Thanks
Alan
 
yungman said:
Can I say if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jd(Ae^{jax}+jbBe^{jbx})=jcCe^{jcx}\Rightarrow;d=c
and if
\;jaAe^{jax}+jbBe^{jbx}=jd(Ae^{jax}+jbBe^{jbx})\Rightarrow\; a=b=d

Therefore a=b=c

Thanks
Alan

I really don't know where those implications are coming from and I don't see how you got a 'd' out of an expression containing a, b and c.
 
You have written some conditional statements in the form of P \Rightarrow Q, but you haven't included any proof of whether they're true or not.

By direct proof, for instance, you have to show that P being true forces Q to be true.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top