yungman
- 5,741
- 294
Proof if A,B and C are non zero constant:
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\Rightarrow\; a=b=c
The answer from the book involve differentiating it twice and manipulate a, b and c to proof.
My question is if I differentiate it once:
\Rightarrow\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
So if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
Does that already proof a=b=c?
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\Rightarrow\; a=b=c
The answer from the book involve differentiating it twice and manipulate a, b and c to proof.
My question is if I differentiate it once:
\Rightarrow\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
So if
Ae^{jax}+Be^{jbx}=Ce^{jcx}\;\hbox { and }\;jaAe^{jax}+jbBe^{jbx}=jcCe^{jcx}
Does that already proof a=b=c?