jackmell
- 1,806
- 54
Hi,
I'm told that a basic result in algebraic geometry is that all algebraic functions w(z) of one variable given by the equation:
f(w,z)=a_n(z)w^n+a_{n-1}(z)w^{n-1}+\cdots+a_0(z)=0
can be written in terms of fractional power series of the form:
w(z)=\sum_{n=-\infty}^{\infty}a_n \left(z^{1/d}\right)^n
Might someone here suggest an accessible reference that goes over the proof or perhaps take a moment to explain some of the basic ideas behind the proof to me?
Thanks,
Jack
I'm told that a basic result in algebraic geometry is that all algebraic functions w(z) of one variable given by the equation:
f(w,z)=a_n(z)w^n+a_{n-1}(z)w^{n-1}+\cdots+a_0(z)=0
can be written in terms of fractional power series of the form:
w(z)=\sum_{n=-\infty}^{\infty}a_n \left(z^{1/d}\right)^n
Might someone here suggest an accessible reference that goes over the proof or perhaps take a moment to explain some of the basic ideas behind the proof to me?
Thanks,
Jack
Last edited: