PROOF (Sequences & Series); Can anyone help me out?

sdrmybrat
Messages
1
Reaction score
0
Prove that:
∀ n€N [(the) sum of an (infinite?) series (a1,+a2,...+,an)] (where a_{n}=\frac{n}{(n+1)!})
\sum \frac{n}{(n+1)!} (is equal to/gives/yields) = 1 - \frac{1}{(n+1)!}

Prove that:
∀ n \in N \sum \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}

THX in advance
 
Physics news on Phys.org
What is the summation index?
 
how it can be
\sum\frac{n}{n+1!}=\sum\frac{1}{n!}\frac{1}{n+1!}
there is a negative sign between last two expessions in n
e-1-(e-2)=1
 
Last edited:
Hey there,

A possible derivation of the sum requested uses the telescoping series property.
Note that for every j, Aj can be expended to -

Aj = j / ( j + 1 )! = 1 / j! - 1 / ( j + 1)!

Summing over 1,...,n would then yield the desired result.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top