Prove Critical Damping: x(t)=A+Bt e^(-Beta t)

eku_girl83
Messages
89
Reaction score
0
Show that the equation x(t)=(A+Bt)e^(-Beta*t) is indeed the solution for critical damping by assuming a solution of the form x(t)=y(t)exp(-Beta*t) and determining the function y(t).

Is there a differential equation for the critically damped case that I can substitute x(t) and its appropriate derivatives into to solve for y(t)?? Hints, please! There are no examples like this in the text...
 
Physics news on Phys.org
This is more of a ODE problem than a physics one as you have notice.
The differential equation for the free damping idealized spring:
m \ddot{x} + c \dot{x} + kx = 0
For the case of critical damping the characteristic polynomial for this linear ODE indicates repeated roots. Well give it a try.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top