Prove Integral_C y dx + x dy Depends on Endpoints of Curve C - Maya

  • Thread starter Thread starter mayaitagaki
  • Start date Start date
  • Tags Tags
    Integral Proof
mayaitagaki
Messages
8
Reaction score
0
I am soooo poor at this kind of proof problem...:cry:
Please help me out with this!

Show that

Integral_C y dx + x dy depends only on the endpoints of the arbitrary curve C.

(Hint: find a potential function f of the vector field <y, x> and use that to integrate
along a parametrization r(t) = <x(t), y(t)> of C with endpoints at t = a and t = b.)

I also attached a jpg file!

Thank you,
Maya:redface:
 

Attachments

  • Parallel Axis Theorem ---.JPG
    Parallel Axis Theorem ---.JPG
    14.1 KB · Views: 413
Physics news on Phys.org


have you tried the hint? finding a scalar potential should be reasonably staightforward
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top