Prove lim na^n = 0 when 0 < a < 1

  • Thread starter Thread starter e(ho0n3
  • Start date Start date
e(ho0n3
Messages
1,349
Reaction score
0
Homework Statement
Prove lim na^n = 0 when 0 < a < 1.

The attempt at a solution
Without danger, we change from the discrete n to the continuous x so that now we have to prove that lim xa^x = 0. Let e > 0. We have to find an N such that xa^x < e for all x > N. Now if xa^x < e is the same as 1 < eb^x/x, where b = 1/a. Using L'Hospital's rule, we have that lim eb^x/x = lim e(ln b)b^x = oo, so there is an N such that 1 < eb^x/x. QED

Is this the simplest way to prove this limit. For some odd reason, I feel that there is a simpler solution. Any tips?
 
Physics news on Phys.org
Apply L'Hopital's rule in the limit \lim x.a^x after writing x.a^x = \frac{x}{a^{-x}}.
 
My first inclination is not to use calculus at all!

Let a < u < 1. Prove that, eventually, (n+1)/n < u/a. Then, an easy inductive proof shows that 0 < n a^n < C u^n for some constant C.

I suppose technically I've used some amount of calculus in that I invoke the Archimedean property, the squeeze theorem, and knowledge that u^n converges to 0.


Come to think of it, the inductive step isn't really going to be conceptually much different from taking a derivative or a logarithmic derivative. (Though the analogy might seem opaque if you're just learning this stuff)
 
I would do it by showing log(n*a^n)/n goes to log(a) using l'Hopital. Hence log(n*a^n) approaches -infinity.
 
Thank you for the suggestions. I'm a little rusty on this stuff.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top