complexnumber
- 61
- 0
Homework Statement
Prove using limit definition $\lim_{z \to z_0} (z^2 + c) = z_0^2 +<br /> c$.
Homework Equations
The Attempt at a Solution
For every $\varepsilon$ there should be a $\delta$ such that
<br /> \begin{align*}<br /> \text{if and only if } 0 < |z - z_0| < \delta \text{ then } |(z^2 + c) -<br /> (z_0^2 + c)| < \varepsilon<br /> \end{align*}<br />
Starting from $ |(z^2 + c) - (z_0^2 + c)| < \varepsilon$
<br /> \begin{align*}<br /> |(z^2 + c) - (z_0^2 + c)| = |z^2 - z_0^2| = |(z+z_0)(z-z_0)| <<br /> \varepsilon<br /> \end{align*}<br />
How can I continue from here?