Prove the Extended Law of Sines

  • Thread starter Thread starter lema21
  • Start date Start date
  • Tags Tags
    Law Law of sines
Click For Summary
The proof presented aims to establish the Extended Law of Sines by first demonstrating that angles ∠BAC and ∠BDC are congruent. It utilizes the properties of a circumscribed circle and the fact that the sum of angles in a triangle equals 180°. The second part of the proof shows the relationship between the sine of angle ∠BAC and the sides of the triangle, ultimately leading to the conclusion that sin(∠BAC) equals BC divided by 2R. The proof could benefit from clearer formatting and more explicit connections between steps for improved clarity. Overall, the approach effectively outlines the necessary relationships to support the Extended Law of Sines.
lema21
Messages
18
Reaction score
9
Homework Statement
Prove the extended Law of Sines.
Hint: Let gamma be the circumscribed circle of triangle ABC and let D be the point on gamma such that DB is a diameter of gamma. Prove that Angle BAC is congruent to Angle BDC. Use that result to prove that sin(angle BAC) = BC/2R, where R is the circumradius.
Relevant Equations
Extended Law of sines: [(BC)/sin(angle BAC)] = [AC/sin(angle ABC)] = [AB/sin(angle ACB)] = 2r
I just want to know if this proof is okay, and I would like advise on how to improve it.
Proof:
i. Proving that ∠BAC ⩭∠BDC:
Let gamma be the circumscribed circle of ABC.
Let D be the point on gamma such that DB is a diameter of gamma.
The sum of the angles within a triangle equal to 180°.
Adding the angles of BAC together, b+a+c =180° where b=∠B, a=∠A, and c=∠C.
Adding the angles of BDC together, b+d+c = 180°, where b=∠B, d=∠D, and c=∠C.
Since the sum of both BAC and BDC equals 180°, b+a+c=b+d+c → a=d.
Hence, ∠BAC ⩭∠BDC.
ii. Proving that sin(∠BAC)=BC/2R:
sin(∠BAC) = P/H
= BC/BD
= BC/sin(∠BDC)
= BD
= 2R
sin(∠ADB) = P/H
= AB/BD
= AB/sin(∠ADB)
= BD
= 2R
AC/sin(∠ABC)= 2R
(BC/sin(∠BAC)) = (AC/sin(∠ABC) = (AB/sin(∠ACB)) = 2R
 
Physics news on Phys.org
\angle BOC=2\angle BAC = 2\angle BDC
may be helpful.
 
  • Like
Likes Charles Link
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...