ehrenfest
- 2,001
- 1
Homework Statement
Can someone give me a hint on problem 5:
http://math.stanford.edu/~vakil/putnam07/07putnam1.pdf
?
Kummer said:It is a nice problem. First, you need to know that is a polynomial of degree n takes the same value (n+1) times then it must be be a constant polynomial. The problem says P(x) is a polynomial with integer coefficients so it means P(x) is an integer whenever x is an integer. We know that |P(x)|<n^2 whenever |x|<n so it means for x = -(n-1),...,-1,0,1,...,(n-1) we get P(x) = -(n^2-1),...,-1,0,1,...,(n^2-1). Let P(x) be the "pigeons" and x be the "x". By strong pigeonhole at least n+1 of the pigeons end up in the same hole. So it must be constant.
If each pigeonhole has at most n pigeons, then at most how many pigeons are there?ehrenfest said:First of all it should be |P(x)|<n whenever |x|<n^2 and secondly I get that there are 2n^2-1 pigeons flying into n-1 pigeon-holes? I have never heard of the strong pigeonhole principle but I do not see why one of the pigeonholes needs to get n+1 pigeons?
morphism said:P(x) = x. n=1, and |P(x)|<1 whenever |x|<1^2. But P(x) is not constant.
ehrenfest said:First of all it should be |P(x)|<n whenever |x|<n^2 and secondly I get that there are 2n^2-1 pigeons flying into n-1 pigeon-holes?
Okay, it is very simple. If you have 6 pigeonholes and 32 pigeons then there is a pigeonhole that has at least 6 pigeons. In general given h pigeonholes and p pigeons then the number is [n/p] where [ ] here is the ceiling function.ehrenfest said:I have never heard of the strong pigeonhole principle
I call the "basic" pigeonhole to be the one that says that there exists at least one hole having two pigeons. The "strong" one is the generalized argument. I am not sure if that is how it is officially called but that is how I refer to it.ehrenfest said:That is what I would just call the normal pigeonhole principle. Is there a reason you called is "strong"?