Proving an equivalence relation using inverse functions

The1TL
Messages
23
Reaction score
0

Homework Statement


Let f : A → B be a function and let Γ ⊂ B × B be an equivalence relation on B. Prove that the set (f × f)^-1 (Γ) ⊂ A × A (this can be described as {(a, a′) ∈ A × A|(f(a), f(a′)) ∈ Γ}) is an equivalence relation on A.

Homework Equations


The Attempt at a Solution


Let (f(a),f(a’)) ⊂ Γ. Since f(a) and f(a’) hold an equivalence relation with each other, it follows that a and a’ hold an equivalence relation with each other. Since f(a) and f(a’) are arbitrary elements of Γ, it follows that (fxf)-1Γ ⊂ A x A is an equivalence relation on A.

I'm not sure if thi is the right approach. In particular I am not sure that i can say that f(a) and f(a') holding an equivalence relation means that a and a' hold one too.
 
Last edited:
Physics news on Phys.org
Does anybody know if I am correct? I'm not sure if I'm skipping steps.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top