Proving Exponential Rules for [A,B]=c

  • Thread starter Thread starter Logarythmic
  • Start date Start date
  • Tags Tags
    Exponential Rules
Logarythmic
Messages
277
Reaction score
0
Can someone give me a hint on how to prove that

exp[A+B]=exp[A]expexp[-c/2]

where A and B are two operators such that [A,B]=c, where c is a complex number.

This is not homework or something, I'm just curious when reading the rules.
 
Physics news on Phys.org
Hello Logarythmic,

the identity would also be true if [A,B] commutes with both A and B. c doesn't necessarily have to be a complex number in the first place.

A common proof starts with defining:

f(x)=e^{Ax}\,e^{Bx}

Calculating \frac{df}{dx} (*) will lead to a first-order differential equation. After finding the solution, f(1) will give the identity.

(*)hint: if [A,B] commutes with A and B then:

e^{-Bx}\,A\,e^{Bx}=A+x[A,B]

Regards,

nazzard
 
Thanks for your answer but I don't get it at all. When calculating the derivative of f(x), should I keep in mind that the operators could depend on x? If A and B commutes, then I could prove it just like with ordinary numbers, right? So suppose that A and B do not commute. Calculating df/dx and solving the differential equation just gives me the originally defined f(x)...? Isn't the easiest way to prove it by using the series expansion of e^A?
 
Treat the operators A and B as if they would not depend on x:

\frac{d}{dx}(e^{Ax}\,e^{Bx})=e^{Ax}\,A\,e^{Bx}+e^{Ax}\,e^{Bx}\,B

=e^{Ax}\,e^{Bx}\,e^{-Bx}\,A\,e^{Bx}+e^{Ax}\,e^{Bx}\,B

Now you can factor out f(x) and apply (*).
 
Last edited:
I solved it. Thanks. =)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top