whkoh
- 29
- 0
By using the Sine formula in triangle ABC, show that:
\frac{a+b}{c} = \frac{cos\frac{A-B}{2}}{sin\frac{c}{2}}.
I've tried:
\frac{2 sin C}{c} = \frac{sin A}{a} + \frac{sin B}{b}
\frac{2 sin C}{c} = \frac{b sin A + a sin B}{a+b}
\frac{a+b}{c} = \frac{b sin A + a sin B}{2 sin C}
\frac{a+b}{c} = \frac{b sin A + a sin B}{4sin\frac{c}{2}cos\frac{c}{2}}
Am I on the right track? Don't really know how to continue.
\frac{a+b}{c} = \frac{cos\frac{A-B}{2}}{sin\frac{c}{2}}.
I've tried:
\frac{2 sin C}{c} = \frac{sin A}{a} + \frac{sin B}{b}
\frac{2 sin C}{c} = \frac{b sin A + a sin B}{a+b}
\frac{a+b}{c} = \frac{b sin A + a sin B}{2 sin C}
\frac{a+b}{c} = \frac{b sin A + a sin B}{4sin\frac{c}{2}cos\frac{c}{2}}
Am I on the right track? Don't really know how to continue.