<\psi_b | z \dot{x} | \psi_a> (magnetic dipole & quadrupole transitions)

andresordonez
Messages
65
Reaction score
0
This is part 2 of problem 4.8 from "Physics of Atoms and Molecules - Bransden, Joachain"

Homework Statement


Deduce [4.106] from [4.105]


Homework Equations


\tilde{M}_{ba} = - \frac{m\omega_{ba}}{\hbar c} \langle \psi _b \vert z \dot{x} \vert \psi _a \rangle [4.105]

\tilde{M}_{ba} = -\frac{\omega_{ba}}{2\hbar c} \langle \psi_b \vert L_y \vert \psi_a \rangle - \frac{i m \omega_{ba}^2}{2\hbar c} \langle \psi_b \vert zx \vert \psi_a \rangle [4.106]


The Attempt at a Solution



-\frac{m\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert z\dot{x}\vert\psi_{a}\right\rangle =-\frac{m\omega_{ba}}{i\hbar^{2}c}\left\langle \psi_{b}\vert z\left[x,H_{0}\right]\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-\left[z,H_{0}\right]x\right)\vert\psi_{a}\right\rangle =i\frac{m\omega_{ba}}{\hbar^{2}c}\left\langle \psi_{b}\vert\left(\left[zx,H_{0}\right]-i\hbar\dot{z}x\right)\vert\psi_{a}\right\rangle

=-i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert p_{z}x\vert\psi_{a}\right\rangle =-\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert\left(L_{y}-zp_{x}\right)\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle

=-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\left[-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle \right]

But then:

-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle =0?

I tried to prove the last equation without success. Any help would be much appreciated.
 
Physics news on Phys.org
Care to explain where the two 2's in the denominator came from ? I think you need to use that [z,p_z]=0 on commutator's domain.
 
I guess you mean the 2's in this expression

<br /> -\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\left[-\frac{\omega_{ba}}{2\hbar c}\left\langle \psi_{b}\vert L_{y}\vert\psi_{a}\right\rangle -i\frac{m\omega_{ba}^{2}}{2\hbar c}\left\langle \psi_{b}\vert zx\vert\psi_{a}\right\rangle +\frac{\omega_{ba}}{\hbar c}\left\langle \psi_{b}\vert zp_{x}\vert\psi_{a}\right\rangle \right] <br />

I was just trying to get [4.106]

<br /> a = \frac{a}{2} +\frac{a}{2}<br />

I think you mean [z,p_z]=i\hbar or [z,p_x]=0. Anyway I don't see how that would help
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top