Q(sqrt(2)) and Q(sqrt(3)) not isomorphic?

  • Thread starter Thread starter geor
  • Start date Start date
geor
Messages
35
Reaction score
0
Hello all,

I am studying Algebra and in the chapter where Galois theory is introduced, I
see the following exercise:

"Prove that Q(sqrt(2)) and Q(sqrt(3)) are not isomorphic"

Well, It seems that I am a bit behind because I really don't get it... :(
I mean, I'm sure that this is the case, since it is a question in the book
(and surely 'not' is not a typo!), but these are vector spaces over Q,
both of dimension 2, so shouldn't they be isomorphic by sending
sqrt(2) to sqrt(3) and any rational number to itself?!

What do I miss here?

Thanks a lot in advance..
 
Last edited:
Physics news on Phys.org
Ooops! I think I see it now..
They are isomorphic as vector spaces but not as fields, right?
The isomorphism I said above does not respect the product..

That's it, right?!
 
Right. (Have you yet shown there isn't a field isomorphism?)
 
What more is true, is that given any square free intgers m and n, Q(sqrt(m)) and Q(sqrt(n)) are nonisomorphic. Intution serves right when you say that it "does not respect the product" but being more rigorous, show that no ismorphism can possibly exist between the two fields by first showing that any isomorphism fixes Q and that sqrt 2 (in this specific case) cannot be sent to any rational number, ie. sqrt 2 is sent to a+b*sqrt 3 for some nonzero rational b. This proof easily generalizes to square free m and n.
 
Thanks a lot!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top