QED : Momentum of the photon-field

  • Thread starter Thread starter Kalimaa23
  • Start date Start date
  • Tags Tags
    Momentum Qed
AI Thread Summary
The discussion focuses on demonstrating the equivalence of two expressions for momentum in quantum electrodynamics, specifically relating to the photon field. The first expression involves a normal product integral, while the second uses a sum over momentum states with a number operator. The challenge arises in handling unwanted terms that appear during the normal ordering process, particularly those involving box normalization. The calculations are broken down into parts, with two yielding the desired result and two canceling out due to integration of odd functions. The conversation also touches on the implications of canonical quantization and the introduction of normal ordering to avoid issues with vacuum energy and momentum.
Kalimaa23
Messages
277
Reaction score
1
Greetings,

I have to show that

\vec{P}=\frac{1}{c^2} \int d^3 x N \left(\dot{A}^{\mu} \nabla A_{\mu}\right)

is equivalent to

\vec{P}= \sum_{\vec{k}} \hbar \vec{k} N(\vec{k})

N in the first expression denotes the normal product, and N(\vec{k}) is the usual number operator.

Now taking the normal ordering one gets
\vec{P}=\frac{1}{c^2} \int d^3 x \left\{\dot{A}^{\mu,+} \nabla A_{\mu}^{+} + \nabla A_{\mu}^{-} \dot{A}^{\mu,+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{-}\right\}

The middle terms give the sougth expression, the exponentials in the expansion of the A_{\mu} nicely cancelling. The first and the last term however is giving me trouble. I basically end up with an unwanted term of the form

\sum_{\vec{k},r} \frac{\hbar \vec{k}}{2} \int \frac{d^3x}{V} \left\{\epsilon^{\mu}_{r} (\vec{k}) \epsilon_{\mu,r} (\vec{k}) \left(a(\vec{k}) a(\vec{k})e^{-2ik.x} + a^{+} (\vec{k}) a^{+} (\vec{k}) e^{2ik.x}\right)\right\}

How to get rid of it?
 
Last edited:
Physics news on Phys.org
I don't like that box normalization.Here's how i do it.

P_{\mu}=\int d^{3}x \ \left(-F^{0\rho}\partial_{\mu}A_{\rho}-\delta_{\mu}^{0}\mathcal{L}_{0}\right) (1)

P_{j}=\int d^{3}x \ \left(-F^{0\rho}\partial_{j}A_{\rho}\right) <br /> <br /> =\int d^{3}x \ \left(-F^{0k}\partial_{j}A_{k}\right) (2)

A^{\mu}=\int \frac{d^{3}p}{(2\pi)^{3}2p_{0}(\vec{p})}\left[ a^{\mu}(p)e^{-ipx}+a^{*\mu}(p)e^{ipx}\right] (3)

\partial_{j}A_{k}(x) =\int \frac{d^{3}p}{(2\pi)^{3}2p_{0}(\vec{p})} \left(-ip_{j}\right) \left[a_{k}(p) e^{-ipx}-a_{k}^{*}(p) e^{ipx} \right] (4)

F^{0k}(x)=\int \frac{d^{3}q}{(2\pi)^{3}2q_{0}(\vec{q})}\left(-i\right) \left\{\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]e^{-iqx}-\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]^{*}e^{iqx}\right\} (5)

Therefore

P_{j}=\int \frac{d^{3}x \ d^{3}p \ d^{3}q}{(2\pi)^{6}2p_{0}(\vec{p}) \ 2q_{0}(\vec{q})} p_{j}\left[ a_{k}(p)e^{-ipx}-a^{*}_{k}(p)e^{ipx}\right]
\times \left\{\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]e^{-iqx}-\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]^{*}e^{iqx}\right\} (6)

Can u do all calculations...?U'll have to break into 4 parts.2 of them give the desired result,while 2 cancel,as they are integrations of odd functions on even domains wrt the origin.

Daniel.
 
Last edited:
And of course,"p" is shorthand from the four-vector:

p^{\mu}=\left(p_{0}(\vec{p}),\vec{p}\right) \ ;p_{0}\left(\vec{p}\right)=\left|\vec{p}\right|

Daniel.
 
Here's another way of looking at it (other lecture notes,other conventions,blah,blah,blah).

A_{\mu}(x)=\frac{1}{(2\pi)^{3/2}}\int \frac{d^{3}k}{\sqrt{2k_{0}}} \sum_{\lambda=0}^{3} \epsilon_{\mu}^{\lambda} \left[a_{\lambda}(k)e^{-ikx}+a_{\lambda}^{*}(k) e^{ikx}\right] (1)

Imposing the Lorenz-Lorentz gauge

a_{3}(k)=a_{0}(k) (2)

The calculation is done for the hamiltonian and the momentum is found by covariance.

H=-\frac{1}{2}\int d^{3}x \left[(\partial_{0}A_{\mu})(\partial_{0}A^{\mu})+(\nabla A_{\mu})\cdot(\nabla A^{\mu})\right]

=\frac{1}{2(2\pi)^{3}}\int \frac{d^{3}x \ d^{3}k \ d^{3}q}{\sqrt{2k_{0}q_{0}}} \sum_{\lambda,\lambda&#039;=0}^{3} \left[\epsilon^{\lambda}(k)\epsilon^{\lambda&#039;}(q)\right] \left [\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda&#039;}(q) e^{-i(k+q)x}

\left -\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda&#039;}^{*}(q) e^{-i(k-q)x}-\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}^{*}(k)a_{\lambda&#039;}(q) e^{i(k-q)x}+\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda&#039;}^{*}(q) e^{-i(k+q)x} \right]

=\frac{1}{2}\int d^{3}k \frac{1}{2k_{0}}\sum_{\lambda,\lambda&#039;=0}^{3} \left[\epsilon^{\lambda}(k)\cdot\epsilon^{\lambda&#039;}(k)\right] \left[-2k_{0}^{2}a_{\lambda}(k)a_{\lambda&#039;}^{*}(k)-2k_{0}^{2}a_{\lambda}^{*}(k)a_{\lambda&#039;}(k)\right]

=-\frac{1}{2}\int d^{3}k \ k_{0}\sum_{\lambda,\lambda&#039;} g^{\lambda\lambda&#039;} \left[a_{\lambda}(k)a_{\lambda&#039;}^{*}(k)+a_{\lambda}^{*}(k)a_{\lambda&#039;}(k) \right]

=-\int d^{3}k \ k_{0} \sum_{\lambda,\lambda&#039;} g^{\lambda\lambda&#039;}a^{*}_{\lambda}(k)a_{\lambda&#039;}(k)

=-\int d^{3}k \ k_{0}\left[a_{0}^{*}(k)a_{0}(k)-a_{1}^{*}(k)a_{1}(k)-a_{2}^{*}(k)a_{2}(k)-a_{3}^{*}(k)a_{3}(k) \right] (3)

To be continued.

Daniel.
 
Using (3) & (2),one gets the desired result

H=\int d^{3}k \ k_{0} \left[a_{1}^{*}(k)a_{1}(k)+a_{2}^{*}(k)a_{2}(k)\right] (4)

Now,through Lorentz covariance,u find easily

\vec{P}=\int d^{3}k \ \vec{k} \left[a_{1}^{*}(k)a_{1}(k)+a_{2}^{*}(k)a_{2}(k)\right] (5)

So this is the classical theory.(5) is the momentum of the field.

Now realize the canonical quantization.The complex amplitudes thus far become operators of annihilation and creation.To avoid an infinit vacuum energy & momentum of the quantum field,one introduces the normal ordering product.

The "sought expression" is

:\hat{\vec{P}}: \ =\int d^{3}k \ \vec{k}\left[\hat{a}_{1}^{\dagger}(k)\hat{a}_{1}(k)+\hat{a}_{2}^{\dagger}(k)\hat{a}_{2}(k)\right] (6)

Define the Number operator and reconsider hbar and you've got it.

Daniel.
 
Last edited:
Hmm, I like the second approach. Its a lot more insightful than the I'm working, but then again I'm stuck using the Mandl & Shaw conventions. Putting stuff in a box and then imposing boundary conditions has always struck me as weird...
 
It doesn't look too logical to me.Sides,there are better books than Mandl & Shaw.I've been taught after Bailin & Love.

Daniel.
 
Back
Top