Kalimaa23
- 277
- 1
Greetings,
I have to show that
\vec{P}=\frac{1}{c^2} \int d^3 x N \left(\dot{A}^{\mu} \nabla A_{\mu}\right)
is equivalent to
\vec{P}= \sum_{\vec{k}} \hbar \vec{k} N(\vec{k})
N in the first expression denotes the normal product, and N(\vec{k}) is the usual number operator.
Now taking the normal ordering one gets
\vec{P}=\frac{1}{c^2} \int d^3 x \left\{\dot{A}^{\mu,+} \nabla A_{\mu}^{+} + \nabla A_{\mu}^{-} \dot{A}^{\mu,+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{-}\right\}
The middle terms give the sougth expression, the exponentials in the expansion of the A_{\mu} nicely cancelling. The first and the last term however is giving me trouble. I basically end up with an unwanted term of the form
\sum_{\vec{k},r} \frac{\hbar \vec{k}}{2} \int \frac{d^3x}{V} \left\{\epsilon^{\mu}_{r} (\vec{k}) \epsilon_{\mu,r} (\vec{k}) \left(a(\vec{k}) a(\vec{k})e^{-2ik.x} + a^{+} (\vec{k}) a^{+} (\vec{k}) e^{2ik.x}\right)\right\}
How to get rid of it?
I have to show that
\vec{P}=\frac{1}{c^2} \int d^3 x N \left(\dot{A}^{\mu} \nabla A_{\mu}\right)
is equivalent to
\vec{P}= \sum_{\vec{k}} \hbar \vec{k} N(\vec{k})
N in the first expression denotes the normal product, and N(\vec{k}) is the usual number operator.
Now taking the normal ordering one gets
\vec{P}=\frac{1}{c^2} \int d^3 x \left\{\dot{A}^{\mu,+} \nabla A_{\mu}^{+} + \nabla A_{\mu}^{-} \dot{A}^{\mu,+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{-}\right\}
The middle terms give the sougth expression, the exponentials in the expansion of the A_{\mu} nicely cancelling. The first and the last term however is giving me trouble. I basically end up with an unwanted term of the form
\sum_{\vec{k},r} \frac{\hbar \vec{k}}{2} \int \frac{d^3x}{V} \left\{\epsilon^{\mu}_{r} (\vec{k}) \epsilon_{\mu,r} (\vec{k}) \left(a(\vec{k}) a(\vec{k})e^{-2ik.x} + a^{+} (\vec{k}) a^{+} (\vec{k}) e^{2ik.x}\right)\right\}
How to get rid of it?
Last edited: