Tangent87
- 146
- 0
I'm am trying to derive the relations:
a|n\rangle=\sqrt{n}|n-1\rangle
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
using just the facts that [a,a+]=1 and N|n>=|n> where N=a^{\dagger}a (which implies \langle n|N|n\rangle=n\geq 0). This is what I've done so far:
[a,a^{\dagger}]=1 \Rightarrow aa^{\dagger}|n\rangle=(n+1)|n\rangle
\Rightarrow a^{\dagger}a(a^{\dagger}|n\rangle)=(n+1)(a^{\dagger}|n\rangle)
Therefore, a^{\dagger}|n\rangle=K|n+1\rangle for some K (possibly complex).
Taking the conjugate and then multiplying together gives:
\langle n|aa^{\dagger}|n\rangle=\langle n|1+N|n\rangle=n+1=|K|^2
So my question is how do we conclude from this that K=\sqrt{n+1}?
a|n\rangle=\sqrt{n}|n-1\rangle
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
using just the facts that [a,a+]=1 and N|n>=|n> where N=a^{\dagger}a (which implies \langle n|N|n\rangle=n\geq 0). This is what I've done so far:
[a,a^{\dagger}]=1 \Rightarrow aa^{\dagger}|n\rangle=(n+1)|n\rangle
\Rightarrow a^{\dagger}a(a^{\dagger}|n\rangle)=(n+1)(a^{\dagger}|n\rangle)
Therefore, a^{\dagger}|n\rangle=K|n+1\rangle for some K (possibly complex).
Taking the conjugate and then multiplying together gives:
\langle n|aa^{\dagger}|n\rangle=\langle n|1+N|n\rangle=n+1=|K|^2
So my question is how do we conclude from this that K=\sqrt{n+1}?