QM - Spin operator conjugate question

QMQuestions2
Messages
2
Reaction score
0

Homework Statement



Okay so I've got a question I really need answered first up! If I have a 2x1 matrix for Psi, is Psi* a 1x2 matrix with all the 'i's turned to '-i's?

Now onto the actual question - http://imgur.com/3ucb4" - part b only

Homework Equations



http://imgur.com/bcEm3"

(Sorry to URL everything)

The Attempt at a Solution



http://imgur.com/FW0dP"

What did I do wrong?
 
Last edited by a moderator:
Physics news on Phys.org
Simply have the 2 x 2 matrix of Sx operate on the state v, then multiply your new 2 x 2 matrix with the conjugate of v.

And yes the conjugate of v is a transpose matrix with the i's all different.
 
Isn't that what I did? v is a 2x1 matrix. When I multiply Sx with v I'm left with a 2x1 matrix, not a 2x2.

Sx times v = v

v* times v = 2

Integral = infinity
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top