Quantum Mechanics particle in a box question

umagongdi
Messages
19
Reaction score
0

Homework Statement



Consider an electron that is constrained to be in a one dimensional box of size L, but is otherwise free to move inside the box.

i.) Write down the (time independent) Schrodinger equation for this particle, the boundary conditions for the wavefunction Ψ and find an expression for the energy levels.

ii.) Consider the process where the electron decays from the nth energy level to the ground state by emitting a photon. Find the wavelength of the emitted photon as function of L, n and m.

iii.) Consider now an electron that can freely move in a two dimensional square box. What are the energy levels in this case. Please motivate your answer.

Homework Equations



I let, h' = h/2π

EΨ(x) = h'/2m * d²Ψ(x)/dx² + U(x)Ψ(x)

p = h/λ

k = nπ/L = 2π/λ

The Attempt at a Solution



HI thanks for taking the time to help me. I have completed part i and ii and need them to be checked. As for part iii i don't have a clue any help is greatly appreciated. These are not h/w questions but past paper questions.

i.) EΨ(x) = -h'/2m * d²Ψ(x)/dx² + U(x)Ψ(x)

0<=x<=L

For the particle in the box U(x) = 0

EΨ(x) = -h'/2m * d²Ψ(x)/dx²

Ψ(x) = A1e^(ikx)+ A2e^(-ikx)
= (A1+A2)cos(kx) + i(A1-A2)sin(kx)
Ψ(0) = (A1+A2) = 0, therefore
A1 = -A2

Ψ(x) = i2A1sin(kx)
d²Ψ(x)/dx² = -i2A1k²sin(kx)

E[i2A1sin(kx)] = (-h'/2m)(-i2A1k²sin(kx))

E = (h')²k²/2m

ii.)

En = p²/2m
= h²/2mλ²
= h²k²/2m(2π)²
= (h')²n²π²/2mL²
= n²π²(h')²/2mL²

E = En - E1
= n²π²(h')²/2mL² - π²(h')²/2mL²
= π²(h')²/2mL²(n-1)

λ = hc/E
= hc/[π²(h')²/2mL²(n-1)]
= hc2mL²(n-1)/π²(h')²
= 8cmL²/h(n-1)

iii.) ?
 
Last edited:
Physics news on Phys.org
For part (i), you should probably have an expression in terms of the quantum number n, not in terms of k.

In part (ii), I think your n2 turned into an n somewhere.

For part (iii), conceptually you can say that the electron is free to move in two dimensions independently. So there will be an energy in the x direction and an energy in the y direction. If you want to prove it to yourself mathematically, use separation of variables on the Schrödinger equation (i.e. assume a spatial wavefunction of the form \psi(x, y) = \psi_x(x)\psi_y(y), plug in, and separate the equation into two equations, one in each dimension)
 
sin(2pi+kx) = sin(kx)...you need to add n in somewhere for your answer of part i.
about the problem of part III i think the method is in many textbook.
1.Separation of variable.
2.Apply boundary conition for both x and y
3.Get energy eigen value
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top