Quantum Wigner master equation

Fabio Hernandez
Messages
3
Reaction score
0
I have the quantum master equation:

$$\frac{\partial\rho}{\partial t}=\frac{1}{i \hbar}[H_0,\rho]+\frac{\gamma}{i \hbar}[q,\{p,\rho\}]-\frac{D}{\hbar^2}[q,[q,\rho]]$$

And have to prove that the coordinates representation is like in the book of the link.

I can't undertand how to obtain the terms with th form (x-y), why (x-y)?.

Thanks.

Reference:
https://books.google.com.br/books?i...rmonic oscillator dissipation feynman&f=false
 
I solve it. Thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top