Quaternions and hypercomplex numbers are incompatible

AI Thread Summary
The discussion centers on the incompatibility between quaternions and hypercomplex numbers, highlighting differing multiplication tables that lead to contradictions regarding the value of k^2. It argues that Hamilton's quaternions and Cayley's octonions are misrepresented as entities, suggesting instead that they are specific algebras using hypercomplex numbers defined by unique products. The conversation emphasizes that while Hamilton's and Cayley's frameworks differ, both can be seen as extensions of complex numbers, albeit with distinct properties. Critics point out that the existence of models for quaternions and octonions in mathematics contradicts the claim that they do not exist. The debate underscores the complexity and abstraction inherent in mathematical definitions and structures.
Owen Holden
Messages
92
Reaction score
0
Extending the number system from complex numbers, (a+bi), to 4-D
hypercomplex numbers, (a+bi+cj+dk), leads to a multiplication
table such as:

(A) i^2=j^2=-1, ij=ji=k, k^2=+1, ik=ki=-j, jk=kj=-i.

Note that these hypercomplex numbers are commutative and have elementary functions.

We can extend this idea to hypercomplex numbers to any dimension.


Sir W. Hamilton introduced 'quaternions' by presenting the
multiplication table;

(B) i^2=j^2=-1, ij=k, ji=-k, k^2=-1, ik=-j, ki=j, jk=i, kj=-i.

Clearly list (A) is incompatable to list (B).

Is k^2=-1 or is k^2=+1, it cannot be both. k cannot be the
same entity in both cases. I believe Hamilton's algebra
would be consistent with hypercomplex numbers if he had
introduced a Hamilton (H) product such that;

iHi=jHj=-1, iHj=k, jHi=-k, kHk=-1, iHk=-j, kHi=j, jHk=i, kHj=-i

where i,j,k are the same hypercomplex numbers as in (A).

It was misleading and incorrect for Hamilton to consider that
quaternions are entities at all. There are no such things as
quaternions. There is a Hamilton algebra which deals with
the concepts that Hamilton wanted to deal with but they are using
hypercomplex numbers in the context of the Hamilton product (H).

In the 8-D case, (a1+a2i2+a3i3+a4i4+a5i5+a6i6+a7i7+a8i8)
multiplication leads to the entries;

(C) (i2)^2=(i3)^2=(i5)^2=-1, (i2)(i3)=i4, (i2)(i5)=i6, (i3)(i5)=i7,
(i4)(i5)=i8, (i4)^2=+1, (i6)^2=+1, (i7)^2=+1, (i8)^2=-1.

Sir A.Cayley introduced 'octonions' by presenting a multiplication
list containing;

(D) (i2)^2=(i3)^2=(i4)^2=(i5)^2=(i6)^2=(i7)^2=(i8)^2=-1.

Again (C) and (D) are incompatible. (i6)^2=+1 from list (C),
contradicts (i6)^2=-1 from list (D). Cayley makes the same
mistake for 'octonions' that Hamilton made for 'quaternions'

There are no such things as octonions. There is a Cayley algebra,
with a Cayley product (Ca), dealing with 8-D hypercomplex numbers
which expresses what Cayley means.

(i2)Ca(i2)=(i3)Ca(i3)=(i4)Ca(i4)=(i5)Ca(i5)=(i6)Ca(i6)=
(i7)Ca(i7)=(i8)Ca(i8)=-1.

Any opinions?

Owen
 
Last edited:
Mathematics news on Phys.org
http://mathworld.wolfram.com/HypercomplexNumber.html


Anyways, I don't follow your objection to considering the quaternions "entities". Clearly, models of the quaternions exist in other happy domains. Even you speak about a particular model! I suspect you are ascribing a fairly unusual definition to the term "entity".
 
All you've done, Owen, is define a *different* 4-dimensional Real Algebra from the one that Hamilton considered. The quartenions have the benefit of being naturally isomorphic to a 2-dimensional complex algebra \mathbb{C}[j]

1. Prove your algebra is also a division ring (as the quarternions are) - that is, as it is commutative, show it is actually a field.

2. Realize that your opinion of what things *ought* to be is no more important that anyone elses. Hamilton provided an example of a division ring that extends C, that was all - in order to do so he had to drop commutativity, but that isn't a big deal.
 
Davenport's commuataive hypercomplex algebra was proabably investigated by Hamilton anyway, though he would of preferred the quartenions as an extension of the complex numbers as they form a divison ring like rational numbers, real numbers and complex numbers whereas Davenport's algebra does not.

Mathematics is an abstartc subject so sattements like "there are no such things as octonions" don't have anything to do with maths. Even if you are a Platonists you'd proabably prefer the quaretnions to other 4-D real algebras as they have many more obvious physical applications.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top