Question 6.9 Taylor: Classical Mechanics

Lujz_br
Messages
4
Reaction score
0

Homework Statement


Hello, I solved others but not 6.9:
Find the equation of the path joining the origin O to point P(1,1) in the xy plane that makes the integral ∫(y'2 +yy' + y2) dx stationary.
∫ from O to P. y' = dy/dx

Homework Equations


I need use ∂f/∂y = d/dx (∂f/∂y') (euler-lagrange equation) with f = y'2 +yy' + y2
∂f/∂y = y' + 2y
∂f/∂y' = 2y' + y

and d/dx (∂f/∂y') = 2 y'' + y', go to euler-lagrange equation we get:
y' + 2y = 2 y'' + y'
this is equivalent to:
y'' = y (eq 1)

y = ex is solution of eq. 1, but it don't fit (0,0) and (1,1)
I see the solution at final of the book: y = senh(x)/senh(1)
Ok, is solution of eq. 1 and fit points (0,0) and (1,1).

There are any thing more? I feel I don't get good answer without look at the final of the book.
Thanks! Luiz

 
Physics news on Phys.org
You have a second-order differential equation, so you should have two solutions. You found one. What's the other one? The general solution will be a linear combination of the two solutions.
 
  • Like
Likes Lujz_br
Ok, 1st is y = A1 ex 2nd is y = A2 e-x and general solution is y = A1 ex + A2 e-x which go to y = senh(x)/senh(1).
Ok, remember this (two solutions) is fine way to get the right answer... :)
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top