Is x(t) equal to the shifted step function u(t+2)-u(t)?

Drao92
Messages
70
Reaction score
0

Attachments

  • Stepf.png
    Stepf.png
    1.1 KB · Views: 666
Physics news on Phys.org
The basic definition is
u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}
(and usually it's defined as u(0) = 1/2, but let's ignore that for now).

So the shifted step function is 1 only if t - a > 0, which means if t > a.

From your graph I gather that you want a function which is 1 if -2 < x < 0 and 0 otherwise. You can easily verify your answer x(t) = u(t + 2) - u(t) by considering the regions x < -2, -2 < x < 0 and x > 0 separately.
E.g. what do x(-3), x(-1) and x(1) work out to?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top