Question commutation in quantum mechanics

Another
Messages
104
Reaction score
5

Homework Statement



Show that ##[L_{x}^2,L_{y}^2]=[L_{y}^2,L_{z}^2]=[L_{z}^2,L_{x}^2]##

Homework Equations


##L^2 = L_{x}^2+L_{y}^2+L_{z}^2##
##L_x = yp_z-zp_y##
##L_y = zp_x-xp_z##
##L_z = xp_y-yp_x##
##[x_i,p_j]=iħδ_{ij}##
##[L_x,L_y]=iħL_z##
##[L_y,L_z]=iħL_x##
##[L_z,L_x]=iħL_y##
##[A,B]=AB-BA##

The Attempt at a Solution



##[L_{x}^2,L_{y}^2]= [L_{x}L_{x},L_{y}L_{y}]##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{y}L_{x}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{y}L_{x}L_{x}±L_{y}L_{x}L_{y}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}L_{x}L_{y}L_{x}-L_{y}L_{y}L_{x}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}(L_{x}L_{y}-L_{y}L_{x})L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}[L_{x},L_{y}]L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+iħL_{y}L_{z}L_{x}##

##[L_{y}^2,L_{z}^2]= [L_{y}L_{y},L_{z}L_{z}]##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}±L_{z}L_{y}L_{z}L_{y}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{y}L_{z}L_{y}+L_{z}L_{y}L_{z}L_{y}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{y}L_{z}L_{y}+iħL_{z}L_{x}L_{y}##

##[L_{z}^2,L_{x}^2]= [L_{z}L_{z},L_{x}L_{x}]##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}±L_{x}L_{z}L_{x}L_{z}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{z}L_{x}L_{z}+L_{x}L_{z}L_{x}L_{z}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{z}L_{x}L_{z}+iħL_{x}L_{y}L_{z}##

It not equal. My answer is incorrect.
 
Physics news on Phys.org
I suggest to use the commutator identities:
[AB,C] = A[B,C] + [A,C]B
[A,BC]=B[A,C] + [A,B]C
(one possible source: http://www.cchem.berkeley.edu/chem120a/extra/commutator.pdf)

Thus, [Lx2,Ly2] = [LxLx, Ly2] = Lx[Lx,Ly2]+[Lx,Ly2]Lx
Then you compute the [Lx,Ly2], which decomposes as a sum of products of Ly and [Lx,Ly].
Notice that the latter do not commute, as [Lx,Ly] ~ Lx, but the whole thing unravels.

I didn't try to go to the end with this, but I believe it should work.

Regards,
Joseph Shtok
 
  • Like
Likes Another and Cryo
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top