Question involving potentials and spherical conductors/capacitors/things

schattenjaeger
Messages
176
Reaction score
0
Say you have a spherical conductor of radius a located inside the cavity of a larger spherical conductor of radius b, and that the larger sphere's outer radius is c

If you charge the inner conductor at a to a charge Q, the inside part of the outer conductor becomes charged -Q and the outer outer part with Q again, ok, I got that

then it wanted the potential anywhere. I understand the potential outside the whole thing, the potential between b and c, but when r is from a to b I had trouble. I had the answer beforehand, which is kQ/(rbc)*[bc-r(b-c)] or I may've mixed that up

I see that if you unsimplify that it's like a sum of potentials. It's the potential between a and b, kQ/r, minus the potential AT the surface b(well, the Q is negative there so I guess you can just say plus the potential at b)plus the potential at c

Simple question: Why is it like that? Is there a more systematic way of reaching that answer? oh and of course the answer from a to b is like that one with r=a
 
Physics news on Phys.org
schattenjaeger said:
Say you have a spherical conductor of radius a located inside the cavity of a larger spherical conductor of radius b, and that the larger sphere's outer radius is c

If you charge the inner conductor at a to a charge Q, the inside part of the outer conductor becomes charged -Q and the outer outer part with Q again, ok, I got that

then it wanted the potential anywhere. I understand the potential outside the whole thing, the potential between b and c, but when r is from a to b I had trouble. I had the answer beforehand, which is kQ/(rbc)*[bc-r(b-c)] or I may've mixed that up

I see that if you unsimplify that it's like a sum of potentials. It's the potential between a and b, kQ/r, minus the potential AT the surface b(well, the Q is negative there so I guess you can just say plus the potential at b)plus the potential at c

Simple question: Why is it like that? Is there a more systematic way of reaching that answer? oh and of course the answer from a to b is like that one with r=a
It is the magic of 1/r^2 and Gauss and all that. Inside any spherically symmetric charge distribution the electric field is zero. That can be shown by direct integration, or by Gauss's Law. That means it takes zero work to move a test charge from one place to another inside a cavity surrounded by such a charge distributiuon, which means the potential due to that charge distribution is constant in that region.

The potential is additive (superposition). It's usually easier to work from the outside into add things up because the outer charges contribute only a constant potential to the inner regions.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top