Question: # of particles within an energy range below Fermi Energy.

Lil Dansn Man
Messages
2
Reaction score
0

Homework Statement


Here's what the question says.

"Consider a cube of gold 1 mm on an edge. calculate the approximate number of conduction electrons in this cube whose energies lie in the range from 4.000 to 4.025 at 300k. Assume Ef(300K) = Ef(0)."



Homework Equations



Well, I know that n(E)dE = g(E)Ffd(E)dE, where g(E) is the density of states, and Ffd is the Fermi-Dirac probability.

Also, N/V = 0-inf∫ n(E)dE

and the Fermi Energy for gold is 5.53 ev


The Attempt at a Solution



Finding the Volume is easy, which is just V = (1e-3)^3

Then, I try to find g(E), which is g(E)dE = DE^(1/2)dE, where D =\frac{8*sqrt(2)*pi*Me^(3/2)}{h^3}

Using 4.00eV for E^(1/2) (and consequently converting it to Joules) I get g(E) = 6.79^37 Energy States/m^3.

Here's what I did in wolfram alpha language:

here's D: http://www.wolframalpha.com/input/?i=(8*sqrt(2)*pi*(9.109e-31)^(3/2))/(6.626e-34)^3)

Now here's D*E^(1/2): http://www.wolframalpha.com/input/?i=1.06e56*(4*1.602e-19)




Pretty much my question is "What do I do next?" Due to N/V equaling an integral, I'm a little iffy on what to do.

Thanks :)
 
Physics news on Phys.org
Hmm sorry, I actually only multiplied by E, not E^1/2...


Here's E^1/2: 1.06e56*((4*1.602e-19)^(1/2))
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top