Question on a Gauss's Law problem

Click For Summary
The discussion revolves around difficulties in solving two Gauss's Law problems. For question 007, the user attempted to calculate the electric field by integrating charge density but received incorrect results, possibly due to misunderstanding the volume element for a cylindrical shell. In question 008, the user calculated the enclosed charge per unit height of an inner cylinder but also arrived at an incorrect conclusion regarding the charge per unit area. A key point raised is the need to correctly define the volume of a thin cylindrical shell when applying Gauss's Law. Clarification on these integration methods is essential for accurate problem-solving.
dliu1004
Messages
2
Reaction score
0
Summary:: I understand the basics of Gauss's Law and how to solve some of the simpler problems, but I cannot seem to solve these two questions.

1644710266918.png
1644710275592.png

For question 007, one of my friends told me I had to ignore the outer shell? I did that: I integrated rho dV: (6.02*r*pi*r^2*h) from r=0 to r=.0462 and set that equal to epsilon(naught)*E*2pi*0.188*h (this is: epsilon(naught) * the closed integral of E dA) and solved for E. Yet, this was incorrect.

For question 008, I calculated the total enclosed charge per unit height of the inner cylinder per meter by integrating rho dV from r=0 to r=.0462. I got something like q(enc)=0.00002154*h, so that means the charge of the inner surface of the hollow cylinder must be -0.00002154*h, right? I then divided that by the surface area of the inner surface, which was 2*pi*.117*h to get charge per unit area, yet, this was also incorrect.

Thanks in advance!
 
Physics news on Phys.org
dliu1004 said:
For question 007, one of my friends told me I had to ignore the outer shell? I did that: I integrated rho dV: (6.02*r*pi*r^2*h) from r=0 to r=.0462

So, your integrand for calculating the charge Q on a length ##h## of the inner cylinder is (including the ##dr##) $$(6.02 \frac{C}{m^4}) r \pi r^2 h dr$$

Note that overall, this does not have the units of charge since ##r \pi r^2 h dr## has units of ##m^5##. I think the problem is with the ##\pi r^2## part of your expression.

What is the volume of a thin cylindrical shell of inner radius ##r##, outer radius ##r+dr##, and length ##h##?
 
Last edited:
  • Like
Likes berkeman, Orodruin and PhDeezNutz
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
6
Views
1K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
10
Views
4K
Replies
10
Views
3K
Replies
11
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K