Question on Equation Rearranging

  • Thread starter Thread starter nicole
  • Start date Start date
Click For Summary
SUMMARY

The discussion revolves around the rearrangement of the equation T^2 = kd + A/d for a physics lab exam. Participants clarify that plotting T^2d against d^2 yields a linear relationship, allowing the extraction of constants k and A from the slope and y-intercept of the resulting graph. The equation can be expressed in the form y = mx + b, where m represents k and b corresponds to A. This confirms that the original equation is indeed nonlinear, but the transformation to a linear format is valid for analysis.

PREREQUISITES
  • Understanding of basic algebra and graphing techniques
  • Familiarity with the concepts of linear and nonlinear equations
  • Knowledge of physics principles related to motion and forces
  • Experience with data analysis and interpretation in experimental settings
NEXT STEPS
  • Study the method of linearization of nonlinear equations in physics
  • Learn about the significance of slope and intercept in graph analysis
  • Explore the use of regression analysis for extracting constants from experimental data
  • Review the principles of dimensional analysis in physics equations
USEFUL FOR

Students preparing for physics exams, educators teaching physics concepts, and anyone involved in experimental data analysis and interpretation.

nicole
Messages
4
Reaction score
0
Hi everybody. Sorry for urgency, but I am in dire need of help for my physics lab exam. Has anyone ever had experience with the formula:

T^2 = kd + A/d

From a graph of T^2d (yaxis) vs. d^2 (xaxis), we can get the slope and the y intercept.

We are supposed to find the values of the constants k and A. Any ideas?

SO FAR...
we have the idea that from the graph we can get an equation of y=mx+b and use that to find the values of k and A. So, the b value would be (A/d) and the mx (kd). Does this work? Any ideas. THANK YOU SO MUCH IN ADVANCE
 
Physics news on Phys.org
If this is T x T = kd + A/d with k,A constants and T, d variables it's a non linear equation, NOT a straight line.
 
Robine said:
If this is T x T = kd + A/d with k,A constants and T, d variables it's a non linear equation, NOT a straight line.

Yes, but they were plottin (T^2 d) as a function of d^2. Now, THAT is then of course equal to T^2 d = k d^2 + A = m d^2 + b.

So the suggestion is obviously correct, but I wonder how the OP cannot see this him/her self...
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
Replies
1
Views
1K
Replies
44
Views
3K
  • · Replies 2 ·
Replies
2
Views
877
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
13
Views
2K
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K