Question regarding Curl and Cross Product

bitrex
Messages
190
Reaction score
0
I'm studying vector calculus, and have a question about the curl and its relation to a cross product of the del operator and a vector. When doing a standard cross product as the formula I have i(det1) - j(det2) + k(det3), where det1, 2 3 are the appropriate 2x2 determinants. However for the curl it's the same determinants, but i + j + k. I'm wondering what the reason for the difference is?
 
Mathematics news on Phys.org
I don't think you are right in your assertion. Curl operates like any other cross product, and the method of cofactors operates the same way.

Looking at the wikipedia page for curl though, you might get confused by the formula given as it has 3 +s, but notice that the order of the ad-bc is switched in front of the j to bc-ad.
 
Ah, I see what I missed now. Thanks for pointing that out.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top