thereddevils
- 436
- 0
\int \frac{1}{2x+3}=\frac{\ln |2x+3|}{2}+c
so why is \int \frac{1}{x^2+x}\neq \frac{\ln |x^2+x|}{2x+1}+c ?
is it because in general ,
\int \frac{1}{x}=\ln |x|+c
the denominator is meant to be only linear function ?
so why is \int \frac{1}{x^2+x}\neq \frac{\ln |x^2+x|}{2x+1}+c ?
is it because in general ,
\int \frac{1}{x}=\ln |x|+c
the denominator is meant to be only linear function ?