What is the Composition of a Pu239 and Pu240 Mixture Based on Specific Activity?

AI Thread Summary
The discussion focuses on calculating the composition of a mixture of Pu239 and Pu240 isotopes based on a specific activity of 6 x 10^9 disintegrations per second (dps). Participants engage in clarifying the equations used for activity calculations, emphasizing the need to differentiate between the number of atoms of each isotope. There is debate over the appropriateness of averaging disintegration constants, with some arguing that this method assumes equal parts of each isotope, which may not be valid. The importance of correctly applying the formula A = λN for each isotope separately is highlighted, as well as the need to derive the ratio of N239 to N240 accurately. The conversation ultimately aims to refine the approach to achieve a correct solution for the mixture's composition.
zorro
Messages
1,378
Reaction score
0

Homework Statement


A mixture of Pu239 and Pu240 has a specific activity of 6 x 109 dps. The half-lives of the isotopes are 2.44 x 104 years and 6.58 x 103 years respectively. Calculate the composition of the mixture.

The Attempt at a Solution



&space;+&space;\frac{100-a}{240}=\frac{1.41\times&space;10^{23}}{6.023\times&space;10^{23}}.gif


The last equation does not give permissible values.

39% and 61%
 
Physics news on Phys.org


Using:

A = \lambda N

where A is the activity in disintegrations/sec, \lambda = ln2/T_{half} in seconds, and N is the number of atoms. The number of seconds in one year is 365.25 x 24 x 60 x 60 = 3.16 x 10^7 seconds

In one second the number of disintegrations from PU239 is:

A_{239} = \frac{\ln 2}{2.44 \times 10^4 \times 3.16 \times 10^7}N_{239}

Similarly for PU240

A_{240} = \frac{\ln 2}{6.58 \times 10^4 \times 3.16 \times 10^7}N_{240}

So the total activity is:

A_{239} + A_{240} = \frac{\ln 2}{2.44 \times 10^4 \times 3.16 \times 10^7}N_{239} + \frac{\ln 2}{6.58 \times 10^4 \times 3.16 \times 10^7}N_{240}

We know that total activity = 6 x 10^9 dps. This is for one gram. Work out N_239 in terms of N_240. This is a little tricky if you want to do it really accurately. But because they are so close in atomic mass, you can use an average molecular weight of 239 or 240 grams/mole and get sufficient accuracy.

AM
 
Last edited:


Hi AM,
I would be very grateful if you would explain me what is wrong with my solution.
 


Abdul Quadeer said:
Hi AM,
I would be very grateful if you would explain me what is wrong with my solution.
You are using just N. To understand why you can't do that, compare my equation with yours. Are they the same? Why are you using N? What does N represent?

Work out A239 and A240 for one gram of each element using the equations I have given you. Then determine the percentage of each element that you must have in order to have A239 + A240 = 6 x 10^9

AM
 


You are using just N. To understand why you can't do that, compare my equation with yours. Are they the same? Why are you using N? What does N represent?

I took the average disintegration constant for both the disintegrations by adding them (which is also done when a particular atom disintegrates in two parallel pathways). N is the total number of atoms of both the isotopes present at any instant.
 


Abdul Quadeer said:
I took the average disintegration constant for both the disintegrations by adding them (which is also done when a particular atom disintegrates in two parallel pathways). N is the total number of atoms of both the isotopes present at any instant.
What is your reasoning for stating:

\lambda = \frac{\ln 2}{3.15 \times 10^7 \times (2.44 \times 10^4 + 6.58 \times 10^3)}?

AM
 


It's

ce;\frac{1}{2.44\times&space;10^{4}}+\frac{1}{6.58\times&space;10^{3}}&space;\right&space;).gif


I took the total (average) disintegration constant assuming the total disintegration to occur only in a single process. N includes the sum of atoms of both isotopes.
 

Attachments

  • ce;\frac{1}{2.44\times&space;10^{4}}+\frac{1}{6.58\times&space;10^{3}}&space;\right&space;).gif
    ce;\frac{1}{2.44\times&space;10^{4}}+\frac{1}{6.58\times&space;10^{3}}&space;\right&space;).gif
    1.4 KB · Views: 397


Abdul Quadeer said:
It's

ce;\frac{1}{2.44\times&space;10^{4}}+\frac{1}{6.58\times&space;10^{3}}&space;\right&space;).gif


I took the total (average) disintegration constant assuming the total disintegration to occur only in a single process. N includes the sum of atoms of both isotopes.
By averaging the disintegration constants, are you not assuming that there are equal parts of each isotope?

Are you really averaging the constants here? Would an average not be:

\lambda_{avg} = \frac{\lambda_{239} + \lambda_{240}}{2} ?

AM
 


Actually I got this idea from a different problem. In that problem, a radioactive isotope disintegrates into two particles with disintegration constants λ1 and λ2. There the solution uses the formula saying (λ1+λ2) to be the average disintegration constant.
A = (λ1+λ2)N

But I think this is applicable only for one particular isotope. Here there are two different isotopes so that method can't be used (don't know why).
 
  • #10


Abdul Quadeer said:
Actually I got this idea from a different problem. In that problem, a radioactive isotope disintegrates into two particles with disintegration constants λ1 and λ2. There the solution uses the formula saying (λ1+λ2) to be the average disintegration constant.
A = (λ1+λ2)N

But I think this is applicable only for one particular isotope. Here there are two different isotopes so that method can't be used (don't know why).
I don't know why you would take the average. I suggest you use the simple approach I have suggested.

AM
 
  • #11


Abdul Quadeer said:
I took the average disintegration constant for both the disintegrations by adding them (which is also done when a particular atom disintegrates in two parallel pathways). N is the total number of atoms of both the isotopes present at any instant.

In the case of one type of atom disintegrating in two different ways, of course there is only one N.

I this case, you have two different atoms. The whole idea is to find N239/N240 (or something similar) for the sample!
 
  • #12


Thanks!
 
Back
Top