Rate of change in an Isosceles triangle

Econguy
Messages
4
Reaction score
0
An Isosceles triangle has two equal sides of length 10cm. Let x be the angle between the two equal sides.

a. Express the area A of the triangle as a function of x in radians.

b. Suppose that x is increasing at the rate of 10 degrees per minute. How fast is A changing at the instant x = pi/3? At what value of x will the triangle have a maximum area?

I've set the triangle and drew a line to cut it in half. the angle is now x/2, and the base is b/2. The hypoteneuse of each triangle is 10.

cos x/2 = adj/hyp = h/10
sin x/2 = opp/hyp = b/2/10 = b/20

A = 100sinx/2 cosx/2
= 100 sinx/2

would that be the equation for part a?

any help for part b would be greatly appreciated.

thanks
 
Physics news on Phys.org
Econguy said:
An Isosceles triangle has two equal sides of length 10cm. Let x be the angle between the two equal sides.

a. Express the area A of the triangle as a function of x in radians.

b. Suppose that x is increasing at the rate of 10 degrees per minute. How fast is A changing at the instant x = pi/3? At what value of x will the triangle have a maximum area?

I've set the triangle and drew a line to cut it in half. the angle is now x/2, and the base is b/2. The hypoteneuse of each triangle is 10.

cos x/2 = adj/hyp = h/10
sin x/2 = opp/hyp = b/2/10 = b/20

A = 100sinx/2 cosx/2
= 100 sinx/2
How did you go from "100 sin(x/2)cos(x/2)" to just "100 sin(x/2)"? What happened to the "cos(x/2)"? Perhaps you were trying to use the fact that sin(2a)= 2sin(a)cos(a).


would that be the equation for part a?

any help for part b would be greatly appreciated.

thanks
Once you have the correct formula for A as a function of x, then dA/dt= (dA/dx)(dx/dt) and you are told that dx/dt= 10 degrees per minute.
 
HallsofIvy said:
How did you go from "100 sin(x/2)cos(x/2)" to just "100 sin(x/2)"? What happened to the "cos(x/2)"? Perhaps you were trying to use the fact that sin(2a)= 2sin(a)cos(a).

Yes, I used the double angle formula (sin(2a)= 2sin(a)cos(a)). Was that incorrect? I thought I could use that identity...?
 
Econguy said:
HallsofIvy said:
How did you go from "100 sin(x/2)cos(x/2)" to just "100 sin(x/2)"? What happened to the "cos(x/2)"? Perhaps you were trying to use the fact that sin(2a)= 2sin(a)cos(a).

Yes, I used the double angle formula (sin(2a)= 2sin(a)cos(a)). Was that incorrect? I thought I could use that identity...?
You can use that identity, but you have to use it correctly.

100 sin(x/2) cos(x/2) = 50 * [2 sin(x/2)cos(x/2)] = 50 sin(2*x/2) = 50 sin(x)
 
Hey guys, so I'd like to resurrect this thread since I'm also working on it.

So for part A) area=50sinx by double angle formula

B) My answer is:

dx/dt=10=0.1745rad/min

da/dt=50cosx(dx/dt)

=50cos(pi/3)(0.1745rad)

=4.36cm^2/min

For max area, using optimization techniques:

A'=50cosx >0 for 0<x<pi/2 and 3pi/2<x<2pi (since dimensions can't be negative)
A' <0 for pi/2<x<3pi/2
A'= 0 for x= pi/2 and 3pi/2
Using closed interval method:
A(pi/2)=50
A(3pi/2)=-50, therefore A will be max when x=pi/2

I have a feeling I did the first part of B) wrong, what do the pros think?
 
Bump, any takers? Bribes? Love perhaps?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
4
Views
2K
Replies
2
Views
4K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Back
Top