Ratio of Inductance between 2 Solenoids?

AI Thread Summary
The discussion centers on calculating the ratio of inductance between two solenoids, A and B, with A having twice the length and twice the number of turns compared to B. Initial calculations suggest a ratio of 2 based on the inductance formula, but the constraint of using the same length of wire for both solenoids complicates the situation. Participants note that increasing the height of solenoid A while keeping the volume constant would require a decrease in its cross-sectional area, potentially altering the inductance ratio. The consensus is that while the initial inductance ratio appears to be 2, the effect of wire length and cross-sectional area must be considered for an accurate calculation. Ultimately, the challenge lies in reconciling the inductance formula with the physical constraints of the solenoids.
David Day
Messages
12
Reaction score
1

Homework Statement


[/B]
1. Two solenoids, A and B, are wound using equal lengths of the same kind of wire. The length of the axis of each solenoid is large compared with its diameter. The axial length of A is twice as large as that of B, and A has twice as many turns as B. What is the ratio of the inductance of solenoid A to that of solenoid B?


2. Homework Equations

L = μ0N2A/L

where N is the number of windings, A is cross-sectional area, and L is the axial length.

The Attempt at a Solution


[/B]
I started by setting the inductance of solenoid B to LB = μ0N2A/L, and altering this equation for the dimensions of solenoid A as specified in the question such that

LA = μ0(2N)2A/2L = μ02N2A/L

in which case the ratio of A:B is 2.

However, I understand that because the question specifies that the same amount of wire is used for both solenoids, changing the length and winding number of solenoid A would also affect its cross-sectional area, but I'm not sure how it can be calculated.

If I calculated correctly, doubling the height of a cylinder but keeping volume constant would require the cross-sectional area to be decreased by half. In this case the inductance ratio of A:B would just be 1, but I don't think that's right.
 
Physics news on Phys.org
David Day said:
However, I understand that because the question specifies that the same amount of wire is used for both solenoids, changing the length and winding number of solenoid A would also affect its cross-sectional area,
Yes.
but I'm not sure how it can be calculated.
Can you express the cross-sectional area in terms of the length of wire and the number of turns of wire?

If I calculated correctly, doubling the height of a cylinder but keeping volume constant would require the cross-sectional area to be decreased by half. In this case the inductance ratio of A:B would just be 1, but I don't think that's right.
There is no requirement that the volumes of the cylinders be the same.
 
TSny said:
Yes.
Can you express the cross-sectional area in terms of the length of wire and the number of turns of wire?

There is no requirement that the volumes of the cylinders be the same.

Yeah, I was thinking that using the same amount of wire, the volume would be constant, which isn't actually the case.

So it seems to me that if the wire is of length x, and the circumference of the wire is 2πrN for each uniform winding, then x = 2πrN and r = x/2πN. I'm not sure if this is correct, though.
 
David Day said:
x = 2πrN and r = x/2πN.
Looks right.
 
  • Like
Likes David Day
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top