Ratio of Oscillation to Period of Damped Harmonic Oscillator

  • Thread starter Thread starter jenkirk
  • Start date Start date
jenkirk
Messages
4
Reaction score
0
we finally got that question, it took us some time but we missed a minus sign! hahah stupid little mistakes, the ones we are working on now are
given the amplitude of a damped harmonic oscillator drops to 1/e of its inital value after n complete cycles show the ratio of oscillation to the period of the sam oscillator with no damping is

T damped/ T undamped = (1 + 1/(4pi^2 n^2) ^(1/2)

i got the auxillary parts where T undamped equals 4pi squared/q^2 where q is 2pi n , and T damped is 4pi ^2n^2 + c2pi n/m somethings not working because i get the wrong stuff on the bottom and c2pi n/m has to equal 1? or rearranging it i get square root ((cn2 (pi))/k + 1) equals Td/T so cn2 pi /k has to somehow equal 1/(4pi^2n^2)


for the second problem the terminal speed of a freely fallin ball is v when the ball is supported by a light elastic spring the spring stretches an amount x, show the natural frequiecy is

w damped = sqare root ( g/x-g^2 / 4v^2)

i know how to prove w undamped equals squareroot (g/x) that is easy

for this one i am getting confused with the question from the time when it is accelerating to when it hits terminal speed and doesn't accelerate, do i have to integrate at all or set up two parts to the problem one with acceleration and one without? because how do i know if it hits terminal speed before it stretches the spring to the max x?
 
Physics news on Phys.org
jenkirk said:
we finally got that question, it took us some time but we missed a minus sign! hahah stupid little mistakes, the ones we are working on now are
given the amplitude of a damped harmonic oscillator drops to 1/e of its inital value after n complete cycles show the ratio of oscillation to the period of the sam oscillator with no damping is

T damped/ T undamped = (1 + 1/(4pi^2 n^2) ^(1/2)
Why are you starting a new thread for this same problem? Stick to your https://www.physicsforums.com/showthread.php?t=134975" or you will have us even more confused than we normally are.

AM
 
Last edited by a moderator:
iunno I've never used this site before i don't know what to do
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top