Reactive Power Control: Relationship to Voltage

AI Thread Summary
The discussion focuses on the relationship between reactive power and voltage, emphasizing that providing reactive power can improve voltage at a bus. When reactive power is supplied through shunt compensation, it reduces the need for power to travel long distances, minimizing voltage drops due to resistance and reactance in the transmission line. Theoretical insights clarify that inductors absorb reactive power while capacitors provide it, with capacitors helping to stabilize voltage by reducing current draw from the source. This power factor correction leads to lower current requirements, enhancing voltage regulation and benefiting utility companies. Overall, effective reactive power management is crucial for maintaining desired voltage levels in electrical systems.
rahil123
Messages
3
Reaction score
0
Friends,i was asked once the relationship between reactive power and voltage.ques is"if i am providing reactive power at some particular bus,voltage at that bus is going to improve".why??i answered that if u will provide reactive power remotely to that bus by some shunt compensation device then the reactive power would not be taken from source.Hence it does not have to travel distance and IXL drop won't be created and desired voltage profile would be maintained.However examiner was not satisfied by the answer.Can anyone please help me out here to provide me a proper explanation between reactive power and voltage?..pleasezzz
 
Engineering news on Phys.org
The voltage drop[ per phase] is [approximate]:
VS-VR=I*[R*cos(a)+X*sin(a)] where :
VS=voltage at source
VR=voltage at receiver
R and X-the resistance and reactance of the cable from source up to receiver.
If a capacitor is inserted in series with cable then:
X=XL-XC where XL=cable reactance XC= capacitor reactance.
If X decreases then VS-VR decreases also.
If a capacitor is inserted in parallel with the receiver then the capacity current will reduce sin(a) canceling the inductive current of the receiver and then if sin(a) decreases even cos(a) increases the total voltage drop will decrease. For instance:
R=1 ohm X=1 ohm cos(a)=0.5 sin(a)=sqrt(1-0.5^2)=0.866 I=10 A
VS-VR=10*(1*0.5+1*.866)=13.66 V
Now let’s say a capacity inserted in series will delete the cable reactance. Then:
VS-VR=10*(1*0.5)=5 V
If the capacitor is in parallel with the receiver then cos(a)=1 and sin(a)=0 .Then:
VS-VR=10*1*1=10 V
Actually the current I will decrease also since I=SQRT(Iactive^2+Ireact^2).
Iactive=I*cos(a)=10*.5=5 A
Ireact=I*sin(a)=10*.866=8.66 A
I=SQRT(5^2+8.66^2)=10 A
Now, if sin(a)=0 then I=Iactive=5 A and the voltage drop will be VS-VR=5*1=5 V.
 
Thankz for d response babadag. AS far as mathematical xplanations are concerned u are absolutely right.But i am not able to understand the theoretical insight.For example inductor which stores energy in magnetic field is said to be reactive power absorbers and capacitor which stores energy in electric field are said to be reactive power providers.WHY?.it is reactive power which builds magnetic field and which builds the voltage.How electric field by the capacitor helps to solve the purpose
 
The alternative current flowing through the inductor generates a variable magnetic field. This magnetic field will generate a variable EFM and it will draw a power from the supply source but only in a quarter of a cycle and in the second quarter will return the power in the circuit. The total power remains not changed only the current rms will grow up with the reactive current. As expected this reactive current will reappear in the circuit retarding 1/4 cycle. So only 90 degrees later the magnetic field will generate an EFM opposing to the supply voltage.
The electric field generated in a capacitor will increase gradually as the electric charge will be accumulated. That means from the beginning of the supply process a voltage returned by the capacitor will diminish the current up to zero when the potential between the electrodes will be equal to supply voltage. At the beginning the current is elevated and will decrease as supply voltage increase. As supply voltage decreases-from the peak toward the zero-the capacitor starts discharging-the current flows in the opposite sense.
If the supply voltage is positive and in rising the capacitive current decreases and so the current returned by magnetic field but it flows in opposite sense. When the supply voltage decreases the capacitive current change the sense and start to grow. The magnetic produced current start to grow also but in opposite sense and so will oppose the capacitive current all the time.
 
The essence of power factor correction is that it results in less current being drawn from the source, while suppying a given load. The lower line current results in less voltage loss over the transmission line, so your load sees its intended voltage and this with improved regulation. The lower current from the source makes the power generator and utility companies happy for they need to provide less current while receiving the same revenue.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top