phillyolly, you have (k^3 + 5k) + 3(k(k+1) + 2). We want to show this is divisible by 6, right? Well we already know (k^3 + 5k) is divisible by 6 because we assumed so in our induction proof. So now we just have to prove 3(k(k+1) + 2) is divisible by 6=3*2, i.e., prove it's divisible by 3 AND 2.
Clearly it's divisible by 3 already. So we just have to show k(k+1) + 2 is divisible by 2. Well clearly the right term is divisible by 2. So we just need to show k(k+1) is divisible by 2. Well, if k is even, then this is clearly true. If k is odd, then the factor of (k + 1) is even, so k(k+1) is still divisible by 2. Thus, 3(k(k+1) + 2) is divisible by 6. Do you follow?