Real Analysis: Properties of Continuity

squaremeplz
Messages
114
Reaction score
0

Homework Statement



Suppose f is continuous on [0,2]and thatn f(0) = f(2). Prove that there exists x,y in [0,2] such that |y-x| = 1 and f(x) = f(y)

Homework Equations





The Attempt at a Solution



I got the following 1 line proof.

Suppose g(x) = f(x + 2) - f(x) on I = [0,2]

this proofs that |x - y| = 1 for x = 1, y = 2

and f(x) = f(y)


thanks!
 
Physics news on Phys.org
As you have defined g, unless you know more about f, then g is only defined at 0 and no other points in [0,2]. I mean g(1)=f(1+2)-f(1)=f(3)-f(1), but what is f(3)?

And how does what you have written show that f(1)=f(2) certainly there are continuous functions on [0,2] with f(0)=f(2) but that do not satisfy f(1)=f(2).

What do you know about the function h(x)=f(x+1)-f(x)?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top