Relation Among Intensive Parameters

Juliush
Messages
2
Reaction score
0
Hello all, this is my first post! Hopefully I can gain some valuable insight.

Homework Statement


Find the relation among T, P and mu for the system with the given equation
U = b S4/NV2
I let b equal the several constants stated in the problem.

Homework Equations


T=dU/dS
P=-dU/dV
mu=dU/dN
The Euler Equation for Thermodynamics U = TS - PV +mu*N
Gibbs Duhem Relation : mu = -sdT + vdP with s = S/N and v = V/N

The Attempt at a Solution


I guess my biggest issue is understanding what is meant by 'relation'. Do I find mu as a function of T and P? If so, I cannot find a way (using the Gibbs Duhem relation) to express 's' and 'v'. I have already found the partial derivatives (equations of state) of the system. Any help would be greatly appreciated!

P.S. I'm not familiar with Latex so I apologize for any misleading notation :)
 
Physics news on Phys.org
My guess is that they ask to express all those quantities as functions of the others... which you can easily do using the definition. Notice also that after computing all of them you can use Euler Equation to check the result. Other than this, I really don't see what else you could find with what you provided!
 
I talked to my professor and here's the solution: Once I have all of my partial derivatives, although there are three extensive parameters, really only the entropy and volume are at play here, such that if I express entropy and volume as per-mole quantities, the Ns disappear from all of my partial derivatives. Thus, I can rewrite mu/T and mu/P as functions of molecular entropy and volume and substitute those into the Gibbs Duhem equation dmu = -sdT + vdP by solving for s and v. From there it's straightforward integration.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top