I Relation between Poincare matrix and electromagnetic field t

Muratani
Messages
3
Reaction score
0
We know that Poincare matrix which is 0 Kx Ky Kz
( -Kx 0 Jz -Jy ) describes the boost and rotation is very similar to
-Ky -Jz 0 Jx
-Kz -y -Jx 0

to the electromagnetic field tensor 0 -Ex -Ey -Ez , in here E field like boost and B field like rotation.
Ex 0 -Bz By
Ey Bz 0 -Bx
Ez -By Bx 0

My question is how they are related theoretically? and how we can show that they stasfy the same algebra?
 
Physics news on Phys.org
What is the Poincare matrix? (Reference?)
What are K and J in this antisymmetric matrix?
(Can you write in ##\LaTeX##?)
 
Poincare matrix is $ M^{\mu\nu}$ in Poincare algebra which describes Lorentz transformations. You can look up wikipedia page https://en.wikipedia.org/wiki/Poincaré_group. If we write $ M^{\mu\nu}$ as matrix form, it looks like
$$ M^{\mu\nu}=\begin{pmatrix} 0 & -K_x & -K_y & -K_z \\ K_x & 0 & J_z & -J_y \\ K_y & J_z &0 & J_x \\ K_z & J_y & -J_x &0 \end{pmatrix}$$.

In parallel to this notation for uniform constant field the electromagnetic field tensor will have a similar effect on charge E field like boost and B field like rotation and field tensor $F^{\mu\nu} $ have similar structure to $ M^{\mu\nu}$

$$ F^{\mu\nu}=\begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & B_z & -B_y \\ E_y & B_z &0 & B_x \\ E_z & B_y & -B_x &0 \end{pmatrix}$$.

I was wondering what is theoretical connection between them?
 
Muratani said:
We know that Poincare matrix which is 0 Kx Ky Kz
( -Kx 0 Jz -Jy ) describes the boost and rotation is very similar to
-Ky -Jz 0 Jx
-Kz -y -Jx 0

to the electromagnetic field tensor 0 -Ex -Ey -Ez , in here E field like boost and B field like rotation.
Ex 0 -Bz By
Ey Bz 0 -Bx
Ez -By Bx 0

My question is how they are related theoretically? and how we can show that they stasfy the same algebra?

M_{\mu\nu} are the 6 abstract generators of the Lorentz group SO(1,3). In the vector representation, M_{\mu\nu} are six 4 \times 4 matrices whose matrix elements are given by (M_{\mu\nu})^{\alpha}{}_{\beta} \sim \delta^{\alpha}_{\mu} \ \eta_{\nu\beta} - \delta^{\alpha}_{\nu} \ \eta_{\mu\beta} \ .
So, for example, the boost generators K_{i} = M_{i0}, \ i = x,y,z are three 4 \times 4 matrices with matrix elements given by (K_{i})^{\alpha}{}_{\beta} \sim \delta^{\alpha}_{i} \ \eta_{0\beta} - \delta^{\alpha}_{0} \ \eta_{i\beta} .
So, in the vector representation, M_{\mu\nu} is a collection of six 4 \times 4 matrices. But, the field tensor F_{\mu\nu} is a collection of 6 functions, i.e., six numbers which you can arrange them into one anti-symmetric 4 \times 4 matrix. Under the Lorentz group, F_{\mu\nu} transforms in the tensor representation of the generators M_{\mu\nu}: \delta F_{\mu\nu} = \frac{i}{2} \left( \omega^{\rho\sigma}M_{\rho\sigma} \right)_{\mu\nu}{}^{\alpha\beta} \ F_{\alpha\beta} .
 
  • Like
Likes dextercioby and vanhees71
The relation is that infinitesimal Lorentz transformations are given by antisymmetric ##4 \times 4## matrices. This is easy to see. For simplicity we work with the representation of Lorentz transformations with two lower indices, i.e.,
$$x_{\mu}'=\Lambda_{\mu \nu} x^{\nu},$$
where
$$\Lambda_{\mu \nu} = \eta_{\mu \rho} {\Lambda^{\rho}}_{\nu}.$$
For a Lorentz transformation you have
$$\eta^{\mu \nu} \Lambda_{\mu \rho} \Lambda_{\nu \sigma}=\eta_{\rho \sigma},$$
and for an infinitesimal transformation, i.e., ##\Lambda_{\mu \rho}=\eta_{\mu \rho}+\delta \Omega_{\mu \rho}## yieds up to quantities of 2nd order in the ##\delta \Omega##
$$\eta^{\mu \nu} (\eta_{\mu \rho}+\delta \Omega_{\mu \rho})(\eta_{\nu \sigma}+\delta \Omega_{\nu \sigma})=\eta_{\rho \sigma}+\delta \Omega_{\sigma \rho} + \delta \Omega_{\rho \sigma} \; \Rightarrow \; \delta \Omega_{\rho \sigma}=-\delta \Omega_{\sigma \rho}.$$
For homogeneous static em. fields the ##F_{\mu \nu}## generate Lorentz transformations, i.e., the trajectories (world lines) of particles are given by Lorentz transformations of the initial momenta, because the equation of motion reads
$$\frac{\mathrm{d} p^{\mu}}{\mathrm{d} \tau}=\frac{q}{c} F^{\mu \nu} p_{\nu}.$$
For ##F^{\mu \nu}=\text{const}## you get indeed Lorentz transformations. For ##\vec{B}=0## it's a rotation-free boost, for ##\vec{E}=0## it's spatial rotation.
 
Thank you very much! It explains a lot.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top