I'm going to be bold here and try to apply physical reasoning, even though I myself am not 100% sure of the answer.
If I interpret this problem correctly, both particles are traveling with speed v in the same direction, so that they remain side-by-side at all times, right?
If that's true, you can imagine transforming to a reference frame in which both particles are stationary and just sitting there with separation d. All of the force is electric in this frame, and none of it magnetic, since we have no moving charges.
But, you might protest that the whole point of relativistic electromagnetism is that a phenomenon that appears electric in one reference frame might be magnetic in another. Yes, but my counterargument is this: in both frames, the observed effects have to be the same. So, if the force is entirely electric in one frame, but partially electric and partially magnetic in another frame, the total force has to be the same. Problem: the electric force between the charges depends only on their separation, and their separation d, is the same in both the lab frame and the frame moving along with the charges. So, the lab frame can't also have additional magnetic forces, because then the observed effects would be different than in the other frame. The only conclusion I can come two is that the effects of the magnetic fields of the two moving charges in the lab frame must cancel each other out.
It's not clear to me exactly why this is true, and you made no attempt to address the question of what "B" was in your solution. But if the magnetic field of a single moving point charge is anything similar to the magnetic field of a steady current, then it is in a circle in a plane perpendicular to the direction of motion, and it's direction is given by the right hand rule. So, in between the two charges, the magnetic fields from each one will be the same in magnitude and opposite in direction. In fact, that might even be true everywhere, which would solve our problem. (EDIT 3: no, it cannot be true everywhere)
EDIT: Or am I just being dumb, because it seems like a one charge would be affected only by the other one's magnetic field and not by its own. I must be missing something here.
EDIT 2: Okay, I looked at gabbagabbahey's post, and I am even more confused. If the magnetic force is supposed to be cancelling out the mutual repulsion of the charges, how is this explained in the co-moving frame, in which there is no cause for magnetic fields, and yet the charges appear to be somehow held at separation d, in apparent violation of Coulomb's law? Is there supposed to be an *external* magnetic field in this problem?