Relationship between single particle partition function and V

hokhani
Messages
556
Reaction score
17
Why when the particles are nonlocalized, the single particle partition function is directly proportional to V, namely the volume of the system, and when the particles are localized, the single particle partition function is independent of V? (Pathria, Statistical Mechanics, chapter 4, section 4.4, equations 2&14)
 
Physics news on Phys.org
when a particle is localized, then, well, they're localized, so no need to worry about the entire volume. but when a particle isn't localized, you have to invoke quantum mechanics and view the particles as wave functions (probability wave). we view this wave function as a standing wave and the number of antinodes in a given space would be the number of possible locations at which this 'particle' can be at. and the number of antinodes is determined by the dimensions of the container these particle can be in (the volume)
 
Last edited:
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top