Relativistic velocity problem with x and y components

AI Thread Summary
Two rockets depart from a space station at speeds of 0.6c and 0.8c along perpendicular paths, prompting a calculation of Rocket 2's velocity in Rocket 1's reference frame. The initial setup incorrectly assigns velocity components, leading to confusion about the correct application of the Lorentz transformation. The correct Ux component is determined to be 0.64c, while the method to calculate Uy remains open for further discussion. Participants emphasize the need for clarity in defining reference frames and the proper use of relativistic equations. The conversation highlights the complexities involved in relativistic velocity transformations.
Luke Cohen
Messages
30
Reaction score
1

Homework Statement


Two rockets leave their space station along perpendicular paths, as measured by a flight controller on the space station (see figure). The flight controller records the speeds of Rockets 1 and 2 to be 0.6 c and 0.8 c respectively. What is the velocity of Rocket 2 as measured in the reference frame of Rocket 1? Give both the components and the magnitude of this velocity

Rocket one is going in the positive y direction and rocket 2 is going in the positive x direction.

Homework Equations


Lorentz2.gif


The Attempt at a Solution



So I tried setting it up by using rocket 1 as the S' frame and rocket 2 as the S frame. The components of velocity are: S' = (-0.8c, 0.6c, 0) and S = (0.8c, -0.6c, 0). Plugging these values into the Ux equation, -0.8 + -0.8 / (1+0.64), but the correct answer is 0.64c for Ux. I also need to figure out Uy, but I think if you can help me solve for Ux, then I can solve for Uy myself. I appreciate all help, Thanks!
 
Physics news on Phys.org
Luke Cohen said:

Homework Statement


Two rockets leave their space station along perpendicular paths, as measured by a flight controller on the space station (see figure). The flight controller records the speeds of Rockets 1 and 2 to be 0.6 c and 0.8 c respectively. What is the velocity of Rocket 2 as measured in the reference frame of Rocket 1? Give both the components and the magnitude of this velocity

Rocket one is going in the positive y direction and rocket 2 is going in the positive x direction.

Homework Equations


Lorentz2.gif


The Attempt at a Solution



So I tried setting it up by using rocket 1 as the S' frame and rocket 2 as the S frame. The components of velocity are: S' = (-0.8c, 0.6c, 0) and S = (0.8c, -0.6c, 0). Plugging these values into the Ux equation, -0.8 + -0.8 / (1+0.64), but the correct answer is 0.64c for Ux. I also need to figure out Uy, but I think if you can help me solve for Ux, then I can solve for Uy myself. I appreciate all help, Thanks!

You can write the Lorentz transformation T1 for (x,y,t) to (x1,y1,t1) with velocity v1 along the x-axis, and the Lorentz transformation T2 for (x,y,t) to (x2,y2,t2) with velocity v2 along the y-axis. To get the transformation for (x1,y1,t1) to (x2,y2,t2), just express express (x2,y2,t2) in terms of (x,y,t) and then express (x,y,t) in terms of (x1,y1,t1). From that, you can work out the relative velocity. However, it will be messy, so get out several sheets of paper and a sharp pencil. Alternatively, you can use a computer algebra system to make it manageable.
 
I don't think my professor would assign anything requiring a computer algebra system... I am also sure that I should be able to solve this problem with the LT equation above for Ux and then the LT equation for Uy. Is there something I am doing incorrectly with my assigning of values to the variables U'x or V?
 
Luke Cohen said:
I don't think my professor would assign anything requiring a computer algebra system... I am also sure that I should be able to solve this problem with the LT equation above for Ux and then the LT equation for Uy. Is there something I am doing incorrectly with my assigning of values to the variables U'x or V?

If (x1,y1,t1) is obtained from (x,y,t) by a Lorentz transformation T1 with velocity v1 along the x-axis, then coordinates of particle 2 (relative to particle 1) are obtained by putting (x,y,t) = (0,v2t,t) in the transformation equation T1. From that you can get the velocities in the 1-frame.
 
Last edited:
Luke Cohen said:

Homework Statement


Two rockets leave their space station along perpendicular paths, as measured by a flight controller on the space station (see figure). The flight controller records the speeds of Rockets 1 and 2 to be 0.6 c and 0.8 c respectively. What is the velocity of Rocket 2 as measured in the reference frame of Rocket 1? Give both the components and the magnitude of this velocity

Rocket one is going in the positive y direction and rocket 2 is going in the positive x direction.

Homework Equations


Lorentz2.gif


The Attempt at a Solution



So I tried setting it up by using rocket 1 as the S' frame and rocket 2 as the S frame. The components of velocity are: S' = (-0.8c, 0.6c, 0) and S = (0.8c, -0.6c, 0).
I don't see how you got those. It's not even clear what frame you're saying these velocities would be observed in. Note that you're also claiming that S and S' are both moving with speed ##c## relative to whatever rest frame you're using since (0.8)^2+(0.6)^2 = 1.

Plugging these values into the Ux equation, -0.8 + -0.8 / (1+0.64), but the correct answer is 0.64c for Ux. I also need to figure out Uy, but I think if you can help me solve for Ux, then I can solve for Uy myself. I appreciate all help, Thanks!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top