Petar Mali
- 283
- 0
Homework Statement
The system S' moves in relation to the system S with velocity \upsilon along the -x- axis. At the time when the beginnings of the coordinate system are in the same point, clocks in both system shows t=t'=0. Which coordinates will have a reference point during the motion in every of these systems, which has the property that in some next moment clocks in systems S, S' shows the same time t=t'. Determine the law of motion of motion of this point.
Homework Equations
Lorentz transformation
x'=\frac{x-\upsilon t}{\sqrt{1-\frac{{\upsilon}^2}{c^2}}}
y'=y
z'=z
t'=\frac{t-\frac{\upsilon}{c^2}x}{\sqrt{1-\frac{{\upsilon}^2}{c^2}}}
The Attempt at a Solution
I tried like this
t'=\frac{t-\frac{\upsilon}{c^2}x}{\sqrt{1-\frac{{\upsilon}^2}{c^2}}}
t=\frac{t'+\frac{\upsilon}{c^2}x'}{\sqrt{1-\frac{{\upsilon}^2}{c^2}}}
t=t'
t-\frac{\upsilon}{c^2}x=t'+\frac{\upsilon}{c^2}x'
t-t'=\frac{\upsilon}{c^2}(x+x')
0=\frac{\upsilon}{c^2}(x+x')
and get
x=\frac{\upsilon t}{\sqrt{1-\frac{\upsilon^2}{c^2}}+1}
Is this correct?