Representing Wavefunction as Superposition of Eigenstates

Kvm90
Messages
28
Reaction score
0

Homework Statement



A particle in the infinite square well with V(x)=0 for 0<x<a and V(x)=infinity otherwise has the initial (t=0) wave function:

psi(x,0)=Ax for 0<x<a/2
psi(x,0)= A(a-x) for a/2<x<a

1) Sketch psi and psi^2 (DONE)
2) Determine A [DONE - 2*sqrt(3)*a^(-3/2)]
3) Find psi(x,t) (HELP!)
4) What is the probability that a measurement of the energy yields the first eigenenergy level E1 of this infinite square well?
5) Find the expectation value of the energy.

Homework Equations



Psi(x,t)=SUMMATION[Cn*Psi n] = SUM[Cn sin((n*pi*x)/a)

Cn=int(psi(x,0)sin((n*pi*x)/a)
Cn=int(A*x*sin((n*pi*x)/a)) + int(A(a-x)*sin((n*pi*x)/a))

Questions!

Do I replace the 'n's in sin((n*pi*x)/a) with 1 and 2 when I'm solving for Cn? Am I trying to represent the wavefunction as a sum of sin((pi*x)/a) and sin((2*pi*x)/a) ... or do I just leave the quantum number n in my equations?
 
Last edited:
Physics news on Phys.org
Kvm90 said:
Questions!

Do I replace the 'n's in sin((n*pi*x)/a) with 1 and 2 when I'm solving for Cn? Am I trying to represent the wavefunction as a sum of sin((pi*x)/a) and sin((2*pi*x)/a) ... or do I just leave
the quantum number n in my equations?

Nope. In general, an infinite number of eigenfunctions is required to represent an arbitrary wavefunction. Once you carry out your integral (which splits up into two integrals since the initial wavefunction is defined piecewise), you will obtain an expression for cn that depends on n (of course).

Don't forget that the summation you have expressed is actually for \Psi(x,0) and that the time dependence comes in as an extra exponential factor multiplying each eigenfunction.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top