Resulting force forward from a flat sail

  • Thread starter Thread starter cosy
  • Start date Start date
  • Tags Tags
    Flat Force
AI Thread Summary
The discussion revolves around calculating the optimal angle for a flat sail on a reach, focusing on the relationship between wind pressure and sail area. The initial approach involved simplifying assumptions, leading to a formula for forward force that proved unsatisfactory, as it resulted in repetitive values. The user realized that the direction of travel is always perpendicular to the wind, which complicates the force calculations. The correct relationship indicates that the forward force is maximized at a 45-degree angle, where the tangent of the angle equals one. Ultimately, the user seeks clarification on the errors in their calculations and understanding of the forces involved.
cosy
Messages
2
Reaction score
0
I wanted to calculate the best angle for a sail on a reach, but realized I had to make the calculation a bit unrealistic by using a flat sail and doing other simplifications to make it possible for me to solve. However it seems that wasn't enough ([emoji4]) since I ended up with a quite useless answer, so I was hoping that I could get some help on here! Here is my approach (not that I assumed all sideways force was counteracted by a centerboard):
I started by assuming we had a sail that was 1m*1m and the pressure from the wind was 1N/m^2 (I just needed a constant). I then defined the area catching wind as cos(x)* the area of the sail, so the area will be cos(x)m^2.
955bf060b6044804b26090e7142e82d1.jpg

That also means that the total force on the sail will be cos(x)N.
This vector can be divided into the drag (which I will ignore for this calculation) and the lift which will be cos(x)^2.
234a08599582b3904a4a6f9e4a4a063e.jpg

The lift itself can be divided into sideways force and force forward. The force forward will be sin(x)*cos(x)^2.
2780becf93f8f77b111156942d5bc3da.jpg

This result however does not make for a satisfying answer as the graph for the function is repetitive and looks like this:
8e78d75b9f02b5b88a5fe0a8bfd030fc.jpg
1c36402d59e3f1318fc0a0ea9be517b9.jpg

I was expecting to get a curve looking something like this:
89779206b2dad17e54ff420f72838384.jpg

where I could find the point where the derivative was 0 to get the maximum value.
So my question is, of course: What did I do wrong? Thanks for any help in advance!
 
Engineering news on Phys.org
I forgot to point out that something was wrong about my funtion on a very deep level since the value of the function at x=90 was >0!
 
It has taken me a bit of of mental thrashing to work this out but the fact is that since the direction of travel is always perpendicular to the direction of the wind then the amount of force available to move the boat forward: F push = F wind x (sail area x Cos Θ) x Sin Θ = F wind x sail area x Tan Θ.
That formula will give you: Tan Θ = 0 at Θ = 0° and Θ = 90°; and, Tan Θ = 1 at Θ = 45°

At Θ = 0°, F sail = 100% (the face of the sail is perpendicular to the wind) but the perpendicular F push vector = 0% of that force and at Θ = 90° the F sail = 0% (the face of the sail is parallel to the wind), while the F push = 100% of that force.
 
Last edited:
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top